• Title/Summary/Keyword: Implantable middle ear

Search Result 37, Processing Time 0.026 seconds

The Design of an Infrared Transcutaneous Control Unit for Totally Implantable Middle Ear System (완전 이식형 인공중이를 위한 체외 및 체내 제어시스템 구현)

  • 정의성;강호경;박일용;윤영호;김민규;송병섭;원철호;조진호
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.5
    • /
    • pp.71-78
    • /
    • 2004
  • An infrared remote control-type transcutaneous control device using a $\mu$-processor is design for the totally implantable middle ear system. An infrared light transmission model for the tissue of skin was introduced and then a radiant intensity and the required current of the infrared light emitting diode(IR LED) driving circuit at transmission part were calculated for the external control device. And the transmission part generates IR signal by the system's own data protocol which prevents interferences from other infrared remote controls of the household appliances. The control part of the implanted device was designed to analyze functions of the received infrared(IR) signal that indicate the power ON/OFF and volume UP/DOWN. After the system is implemented, a data transmission experiments using 4 mm thickness of porcine skin were carried out. From the experiment, it was verified that the infrared control signal was transmitted to receiving module of the implemented system without any error.

Lumped Model Parameter Estimation of Floating Mass Transducers based on Sequential Quadratic Programming Method for IMEHDs (Sequential Quadratic Programming 방법을 이용한 인공중이용 플로팅 매스 트랜스듀서의 집중 모델 파라미터 추정)

  • Park, I.Y.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.5 no.1
    • /
    • pp.59-64
    • /
    • 2011
  • In this paper, the lumped element model parameter estimation method and its implemented estimation software for fabricated floating mass transducers of IMEHDs have been presented so that the estimated parameter values could be compared with the designed ones and applied to predict the output performance when the transducers were implanted into human ears. The presented method is based on the sequential quadratic programming (SQP) for estimating parameters in the transducer's lumped model and has been implemented by the use of LabVIEW graphical language. Using the implemented estimation software, the accuracy of parameter estimation has been verified and our implemented estimation method has been evaluated by the comparison of the estimated transducer parameter values with the designed ones for a practically fabricated floating mass transducer for IMEHDs.

Design of External Coil System for Reducing Artifact of MR Image due to Implantable Hearing Aid (이식형 보청기에 의한 자기공명 영상의 인공음영 축소를 위한 외부 코일 시스템 설계)

  • Ahn, Hyoung Jun;Lim, Hyung-Gyu;Kim, Myoung Nam;Cho, Jin-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.375-385
    • /
    • 2016
  • Recently, several implantable hearing aids such as cochlear implant, middle ear implant, etc., which have a module receiving power and signal from outside the body, are frequently used to treat the hearing impaired patients. Most of implantable hearing aids are adopted permanent magnet pairs to couple between internal and external devices for the enhancement of power transmission. Generally, the internal device which containing the magnet in the center of receiving coil is implanted under the skin of human temporal bone. In case of MRI scanning of a patient with the implantable hearing aid, however, homogeneous magnetic fields of the MRI might be interfered by the implanted magnet. For the above reasons, the MR image is degraded by large area of artifact, so that diagnostics are almost impossible in deteriorated region. In this paper, we proposed an external coil system that can reduce the artifact of MR image due to the internal coupling magnet. By finite element analysis estimating area of MR artifact according to varying current and shape of the external coil, optimal coil parameters were extracted. Finally, the effectiveness of the proposed external coil system was verified by confirming the artifact at real MRI scan.

Development of a Multi-Layer Actuator With Piezoelectric Single Crystals for an Implantable Hearing Aid (압전 단결정 재료를 이용한 이식형 인공중이용 적층 액츄에이터 개발)

  • Lee, Sang-gu;Roh, Yong-rae;Seon, Joo-heon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.127-132
    • /
    • 2005
  • Transducers for implantable hearing aids need to be small and to have good performance in frequency responses and vibration properties. From this viewpoint, we Proposed a multi-layer actuator with the piezoelectric single crystal, PMN-PT. for the implantable hearing aid. and verified its adequacy through finite element analyses and experiments. PMN-PT multi-layer actuator samples were fabricated by stacking fourteen layers of the PMN-PT crystal. Each layer were $0.2{\cal}mm$ thick and the actuator sample was $2.8{\cal}mm$ thick in total. We evaluated the performance of the PMN-PT actuator through impedance analyses and vibration displacement measurements, and compared the result with that of a PZT actuator. Results of all the process confirmed the feasibility of the PMN-PT actuator as a good transducer for an implantable hearing aid.

Lumped Mechanical Model of Electromagnetic Floating Mass Transducer Implanted on Human Middle Ear (이소골에 장착된 전자기 플로팅매스 진동체에 대한 집중 질량-스프링 모델의 제안)

  • Seong, Ki-Woong;Kim, Min-Woo;Lee, Jang-Woo;Lim, Hyung-Gyu;Jung, Eui-Sung;Kim, Dong-Wook;Lee, Myung-Won;Lee, Jung-Hyun;Kim, Myoung-Nam;Lee, Kyu-Yeop;Lee, Sang-Heun;Park, Il-Yong;Cho, Jin-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.2
    • /
    • pp.162-168
    • /
    • 2009
  • Implantable middle ear hearing devices (IMEHDs) have been widely studied as an alternative hearing aids to solve the problems of conventional hearing aids. Vibration transducer of middle ear hearing aids is a key component because vibration characteristics of transducer is directly involved performance of hearing aids. So, the study about middle ear hearing aids concentrate on the transducers. A floating mass type transducer is most efficient. In this paper, we suggest a lumped mechanical model of electromagnetic floating mass transducer implanted on human middle ear. The proposed model enables analysis of the vibration characteristics of a floating mass transducer and prediction of the variation after implant on ossicle that offers a simple and easy to analyze. The parameters was drawn based on the components and the structures of transducer. The Lumped mechanical model was converted by the electrical-mechanical equivalent model, and simulated using PSpice. So, we investigated vibration characteristics of transducer influenced it's components. And we predict vibration characteristics of stapes footplate due to implanted transducer's vibration using combining model of transducer and human ear. To prove the feasibility of the suggested model, we fabricated a differential floating mass transducer (DFMT) as one of floating mass transducers and performed experiments using the human temporal bones.

Miniaturization and Optimization of Electromagnetic Actuators for Implantable Hearing Device Based on MEMS Technology (MEMS 기술 기반 이식형 청각 장치용 전자기 엑츄에이터의 소형화 및 최적화)

  • Kim, Min-Kyu;Jung, Yong Sub;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.99-104
    • /
    • 2018
  • A micro electromagnetic actuator with high vibration efficiency is proposed for use in an implantable hearing device. The actuator, which can be implanted in the middle ear, consists of membranes based on the stainless steel 304 (SUS-304), and other components. In conventional actuators, in which a thick membrane and a silicone elastomer are used, the size reduction was difficult. In order to miniaturize the size of the actuator, it is necessary to reduce the size of the actuation potion that generates the driving force, resulting in reduction of the electromagnetic force. In this paper, the electromagnetic actuator is further miniaturized by the metal membrane and the vibration amplitude is also optimized. The actuator designed according to the simulation results was fabricated by using micro-electro-mechanical systems (MEMS) technology. In particular, a $20{\mu}m$ thick metal membrane was fabricated using the erosion process, which reduced the length of the actuator by more than $400{\mu}m$. In the experiments, the vibration displacement characteristics of the optimized actuator were above 400 nm within the range of 0.1 to 1 kHz when a current of $1mA_{rms}$ was applied to the coil.

Design of electromagnetic type transducer to drive round window with high efficiency (고효율 전자기형 정원창 구동 트랜스듀서의 설계)

  • Lee, Jang-Woo;Kim, Dong-Wook;Kim, Myoung-Nam;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.449-455
    • /
    • 2010
  • Implantable middle ear hearing devices(IMEHDs) have being actively studied to overcome the problems of conventional hearing aids. Vibration transducer, an output devices of IMEHDs, is attached on the ossicular chain and transmits mechanical vibration to cochlea. This approach allows us to hear more clear sound because mechanical vibration is effective to transfer high frequency acoustics, but occurs some problems such as fatigue accumulation to ossicular chian and reduction of vibration displacement caused by mass loading effect. Recently, many studies for the round window stimulation are announced, because it does not cause such problems. It have been studied by older transducers designed for attaching on ossicular chain. In this paper, we proposed a new electromagnetic transducer which consists of two magnets, three coils and a vibration membrane. The magnet assembly, magnet coupled in opposite direction, were placed in the center of three coils, and the optimum length of each coil generating maximum vibrational force was calculated by finite element analysis(FEA). The transducer was implemented as the calculated length of each coil, and measured vibration displacement. From the results, it is verified the vibration displacement can be improved by optimizing the length of coils.