• Title/Summary/Keyword: Implantable middle ear

Search Result 37, Processing Time 0.027 seconds

Design of Vibrating Transducer for Implantable Middle Ear Hearing Aid (이식형 중이 청각보조기를 위한 진동 트랜스듀서의 설계)

  • 박형욱
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.535-544
    • /
    • 1996
  • In this paper, we analyzed the coil-magnet type vibrating transducer for the implantable middle ear hearing aid which is appropriate for patient's hearing level, and an experimental transducer system is designed For the objective and quantitative analysis of the transducer, a theoretical equivalent model containing coil, magneto and inner ear is developed To perform effective evaluation of the transducer, a transforming ratio Tr is introduced and its range that is suitable for practical implantable middle ear hearing device is foun4 The result of applying physical parameters of ear system to the proposed analytical model shows that frequency response of the coil magrlet type vibrator is predominantly governed by resistive impedance of the coil rather than inertia effect of the magnet and the inner parameters. In addition, we realized an experimental middle ear hearing aid system to show the theoretical validity of designed system and this will provide the basis of the development for actually implantable system.

  • PDF

Development of Fully-Implantable Middle Ear Hearing Device with Differential Floating Mass Transducer : Current Status

  • Cho Jin-Ho;Park Il-Yong;Lee Sang-Heun
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.5
    • /
    • pp.309-317
    • /
    • 2005
  • It is expected that fully-implantable middle-ear hearing devices (FIMEHDs) will soon be available with the advantages of complete concealment, easy surgical implantation, and low power operation to resolve the problems of semi-implantable middle-ear hearing devices (SIMEHDs) such as discomfort of wearing an external device and replacement of battery. Over the last 3 years, a Korean research team at Kyungpook National University has developed an FIMEHD called ACRHS-1 based on a differential floating mass transducer (DFMT). The main research focus was functional improvement, the establishment of easy surgical procedures for implantation, miniaturization, and a low-power operation. Accordingly, this paper reviews the overall system architecture, functions, and experimental results for ACRHS-1 and its related accessories, including a wireless battery charger and remote controller.

A Physical Ear Model for Evaluating Hybrid-acoustic Sensor Characteristics of Fully Implantable Middle-ear Hearing Aid (완전 이식형 인공중이의 하이브리드 음향센서 특성 평가를 위한 귀 물리모델)

  • Shin, Dong Ho;Moon, Ha Jun;Kim, Myoung Nam;Cho, Jin-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.8
    • /
    • pp.923-929
    • /
    • 2019
  • In this paper, biomimetic based physical ear model proposed for measuring the characteristics of a hybrid-acoustic sensor for fully implantable middle-ear hearing aid. The proposed physical ear model consists of the external ear, middle-ear, and cochlea. The physical ear model was implemented based on the anatomical structure and CT images of the human ear. To confirm the characteristics of the ear model, the vibrational characteristics of the stapes was measured after applying sound pressure to the tympanic membrane. The measured results were compared with the vibrational characteristics of the human temporal bone specified by ASTM F2504-05. Through the comparison results, the feasibility of the proposed ear model was confirmed. Then, after attaching the hybrid-acoustic sensor to the ear model, the output characteristics of the ECM and acceleration sensor were measured according to the sound pressure. The measured results were compared with previous studies using human temporal bone, and the usefulness of the proposed physical ear model was verified through the analysis results.

Proposal of Magnetic Coupling Type Implantable Middle Ear Hearing Aid (자기결합방식의 이식형 인공중이의 제안)

  • 정영숙;윤영호;박재훈;송병섭;이승하;김명남;조진호
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.487-495
    • /
    • 1998
  • In this paper, a new type of implantable middle ear hearing aid, which consists of external loop coil, a small magnet and a simple external device, is proposed. The internal device of proposed type consists of only a small magnet and the external device does not need to be positioned behind the ear or in the ear canal. The proposed type is excellent in cosmetic sides and very convenient to use, because the external device can be hidden in upper garment and collar of clothes. Also, purposely this type doesn't need to be small on the size of battery, which means it has longer battery life. Therefore, the battery is not necessary to be charged frequently. It also can solve the difficulty of gap calibration at surgical operation which conventional Implantable middle. Therefore, the battery is not necessary to be charged frequently. It also can solve the difficulty of gap calibration at surgical operation which conventional implantable middle ear hearing aid has. We investigate the performance of proposed implantable middle ear bearing aid and we analyze that proposed type is appropriate for mild and severe hearing impaired person and the result of experiment showed the accuracy of our analysis. For the validation of our analysis we used the temporal bone at the experiment and confirm that ossicles can be vibrated when the proposed system In startled in the body.

  • PDF

Design of Signal Processing Circuit for Semi-implantable Middle Ear Hearing Device with Bellows Transducer (벨로즈형 진동체를 갖는 반이식형 인공중이용 신호처리회로 설계)

  • Kim, Jong Hoon;Shin, Dong Ho;Seong, Ki Woong;Cho, Jin-Ho
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.1
    • /
    • pp.63-71
    • /
    • 2017
  • In this paper, a signal processing circuit for semi-implantable middle ear hearing device is designed using the TCBT which is recently proposed for a new middle ear transducer that can be implanted at round window of cochlea. The designed semi-implantable hearing device transmits digital sound signal from external device located at behind the ear to the internal device implanted under the skin using inductive coupling link methods with high efficiency. The coils and signal processing circuits are designed and implemented considering the total transmission and reception distance including skin thickness of temporal bone for the semi-implantable hearing device. And also, to improve the data transmission efficiency, the output circuits which can supply sufficient signal power is designed. In order to confirm operation of semi-implantable hearing device using inductive coupling link, the circuit analysis was performed using PSpice, and the performance was verified by implementing a signal processing board of an available size.

Design and Implementation of a Vibration Transducer based on PZT Multi-layered Actuator for Implantable Middle Ear Hearing Devices (PZT 적층 압전체 기반의 인공중이용 트랜스듀서 설계 및 구현)

  • Park, I.Y.;Jung, E.S.;Seong, K.W.;Kim, M.W.;Cho, J.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.1 no.1
    • /
    • pp.29-36
    • /
    • 2007
  • Recently, implantable middle ear hearing devices (IMEHDs) have been developed to overcome the problems of conventional hearing aids. In this paper, a piezoelectric floating mass transducer (PFMT) based on a PZT multi-layered actuator has been designed and implemented using the approximated mechanical vibration modeling for the PFMT and the analysis of vibration characteristics through the transformation into the equivalent electrical model. The implemented PFMT has been attached to the ossicle of a human cadaver's temporal bone and the in-vitro experiment has been performed. Through the experimental results, it has been verified that the PFMT applied into our developed implantable middle ear hearing device can be used for an IMEHD transducer.

  • PDF

Proposal of a piezoelectric floating mass transducer for implantable middle ear hearing devices (이식형 인공중이를 위한 압전 플로팅 매스 트랜스듀서의 제안)

  • Lee, Chang-Woo;Kim, Min-Kyu;Park, Il-Yong;Song, Byung-Seop;Roh, Yong-Rae;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.322-330
    • /
    • 2005
  • A new type of transducer, piezoelectric floating mass transducer (PFMT) which has advantages of piezoelectric and electromagnetic transducer has been proposed and implemented for the implantable middle ear hearing devices. By the uneven bonding of piezoelectric material to the inner bottom of transducer case, the PFMT can vibrate back-and-forth along the longitudinal axis of the transducer even though the piezoelectric material within the cylindrical case produces only the bilateral expansion and contraction according to the applied electrical signal. To improve efficiency of the PFMT, the multi-layered piezoelectric material has been adapted. The small number of components in the PFMT enables the simple manufacturing and the easy implanting into the middle ear. In order to examine the characteristics of vibration, mechanical modeling and finite element analyses of the proposed transducer have been performed. From the result of theoretical analyses and the measured data from the experiment, it is verified that the implemented PFMT can be used in implantable middle ear hearing devices.

Vibration Modeling and Optimal Design of Differential Electromagnetic Transducer for Implantable Middle Ear Hearing Devices using the FEA (FEA를 이용한 이식형 인공중이용 차동전자 트랜스듀서의 진동 모델링과 최적 설계)

  • Kim Min-Kyu;Lim Hyung-Gyu;Han Chan-Ho;Song Byung-Seop;Park Il-Yong;Cho Jin-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.7
    • /
    • pp.379-386
    • /
    • 2005
  • Among various kinds of hearing aids which have been developed so far. the conventional air conduction hearing aids have some problems such as the acoustic distortion, an howling effect due to acoustic feedback. Another type of hearing aid. the cochlear implant system can be applied to the profound imparied person. However. it shows the disadvantage that there is no possibility of recovery of the acoustic organ such as ossicle. On the other hand. the implantable middle ear heaving device directly vibratos the ossicular chain and has better sound qualify. good cosmetics for appearance. and wide frequency responses so that it can overcome the defects or the conventional hearing aids. In this paper, a mathematical modeling and a momentum equation derivation of the DET has been performed. For the optimization of the structure dimension generating maximal vibrating force of the DET. the computer simulation using a finite element analysis (FEA) software has been performed. Also. the vibrating transducer has been designed to make the frequency characteristics or the transducer be similar to those of the normal middle ear. Through the experimental results, the measured vibration characteristics of the DET has been evaluated to verify the performance for the application to implantable middle ear hearing devices.

Implementation a Physical Ear Model for Determinating Location of the Microphone of Fully Implantable Middle Ear Hearing Device (완전 이식형 인공중이용 마이크로폰의 위치 결정을 위한 물리적 귀 모델의 구현)

  • Kim, D.W.;Seong, K.W.;Lim, H.K.;Kim, M.W.;Jung, E.S.;Lee, J.W.;Lee, M.W.;Lee, J.H.;Kim, M.N.;Cho, J.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.2 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • Generally, implantable microphone has been implanted in the temporal bone for implantable middle ear hearing devices (IMEHDs). In this case, the microphone's membrane can be damaged and can be generated biological noise. In order to overcome the these problems, the location of implanted microphone should be changed. As an alternative, the microphone can be implanted in the external auditory canal. However, the sound emission can be produced because of vibration transducer toward reverse direction from the tympanic membrane to the external auditory canal. In this paper, an amount of the emitted sound is measured using a probe microphone as the changing the position of microphone in the external auditory canal of a physical ear model, which is similar to acoustical and vibratory properties of the human ear. Through the measured value, the location of the microphone was assumed in the external auditory canal. According to the analysis, the microphone input sound can be decreased when microphone position become more distance from the tympanic membrane in the auditory canal. However, the external auditory canal is not appropriated to implantable microphone position, because sound emission is not completely eliminated.

  • PDF

Analysis of Signal Transfer Characteristics of Implantable Middle Ear System using Acoustic Model (청각모델을 이용한 이식형 인공중이 시스템의 신호 전달 특성 해석)

  • 송병섭;조진호
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.227-233
    • /
    • 2002
  • The IME(implantable middle ear) system is Promising due to its ability to free from sound feedback and Produce a good sound quality and intelligibility with low distortion even if it is operated with high gain for severe hearing impaired. The differential electromagnetic vibration transducer. which was developed for using in IME system and has two small magnets attached the same Pole facing in the coil. is not influenced by environmental external magnetic field. Besides, it has high vibration efficiency and good frequency response characteristics. In this Paper, using acoustic model of the transducer and ear model of normal Person. the signal transfer characteristics of the IME system are analyzed and investigated From the differences of the characteristics between normal ear and the IME system, it is Possible that design of the IME system that have the signal transfer characteristics similar to normal person's ear.