• Title/Summary/Keyword: Implant-abutment design

Search Result 108, Processing Time 0.032 seconds

A FINITE ELEMENT STRESS ANALYSIS OF THE STRESS DISTRIBUTION AND THE SHOCK ABSORPTION IN AN OSSEOINTEGRATED IMPLANT-NATURAL TOOTH SUPPORTED FIXED PARTIAL DENTURE (골유착성 임프란트와 자연치를 이용한 고정성 국소의치에서 응력분산 및 충격흡수에 관한 유한요소법적 응력분석)

  • Jeong Chang-Mo;Lee Ho-Yong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.4
    • /
    • pp.582-610
    • /
    • 1992
  • The long-term success of any dental implant is dependent upon the optimization of stresses which occur during oral function and parafunction. Especially, it has been suggested that there is an unique set of problems associated with joining an osseointegrated implant and a natural tooth with a fixed partial denture. For this particular case, although many literatures suggest different ways to avoid high stress concentrations on the bone surrounding the implant under static and dynamic loading conditions, but few studies on the biomechanical efficacy of each assertion have been reported. The purpose of this investigation was to evaluate the efficacies of clinically suggested methods on stress distribution under static load and shock absorption under dynamic load, using two dimensional finite element method. In FEM models of osseointegrated implant-natural tooth supported fixed partial dentures, calculations were made on the stresses in surrounding bone and on the deflections of abutments and superstructure, first, to compare the difference in stress distribution effects under static load by the flexure of fastening screw or prosthesis, or intramobile connector, and second, to compare the difference in the shock absorption effects under dynamic load by intramobile connector or occlusal veneering with composite resin. The results of this analysis suggest that : 1. Under static load condition, using an implant design with fastenign screw connecting implant abutment and prosthesis or increasing the flexibility of fastening screw, or increasing the flexibility of prosthesis led to the .increase in height of peak stresses in cortical bone surrounding the implant, and has little effect on stress change in bone around the natural tooth. 2. Under static load condition, intramobile connector caused the substantial decrease in stress concentration in cortical bone surrounding the implant and the slight increase in stress in bone around the natural tooth. 3. Under dynamic load condition, both intramobile connector and composite resin veneering showed shock absorption effect on bone surrounding the implant and composite resin veneering had a greater shock absorption effect than intramobile connector.

  • PDF

Microscopical and chemical surface characterization of CAD/CAM zircona abutments after different cleaning procedures. A qualitative analysis

  • Gehrke, Peter;Tabellion, Astrid;Fischer, Carsten
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.151-159
    • /
    • 2015
  • PURPOSE. To describe and characterize the surface topography and cleanliness of CAD/CAM manufactured zirconia abutments after steaming and ultrasonic cleaning. MATERIALS AND METHODS. A total of 12 ceramic CAD/CAM implant abutments of various manufacturers were produced and randomly divided into two groups of six samples each (control and test group). Four two-piece hybrid abutments and two one-piece abutments made of zirconium-dioxide were assessed per each group. In the control group, cleaning by steam was performed. The test group underwent an ultrasonic cleaning procedure with acetone, ethyl alcohol and antibacterial solution. Groups were subjected to scanning electron microscope (SEM) analysis and Energy-dispersive X-ray spectroscopy (EDX) to verify and characterize contaminant chemical characterization non- quantitatively. RESULTS. All zirconia CAD/CAM abutments in the present study displayed production-induced wear particles, debris as well as organic and inorganic contaminants. The abutments of the test group showed reduction of surface contamination after undergoing an ultrasonic cleaning procedure. However, an absolute removal of pollutants could not be achieved. CONCLUSION. The presence of debris on the transmucosal surface of CAD/CAM zirconia abutments of various manufacturers was confirmed. Within the limits of the study design, the results suggest that a defined ultrasonic cleaning process can be advantageously employed to reduce such debris, thus, supposedly enhancing soft tissue healing. Although the adverse long-term influence of abutment contamination on the biological stability of peri-implant tissues has been evidenced, a standardized and validated polishing and cleaning protocol still has to be implemented.

The Study on the Physical Property of Provisional Prosthesis using Modified Temporary Abutment (변형된 임플란트 임시 지대주의 물성에 대한 연구)

  • Yang, Byung-Duk;Yoon, Tae-Ho;Choi, Un-Jae;Park, Ju-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.4
    • /
    • pp.329-340
    • /
    • 2006
  • Statement of problem: Damping of the peak force transmitted to implants has been reported by in vitro studies using impact forces on resin-veneered superstructures. Theoretical assumptions suggest that use of acrylic resin for the occlusal surfaces of a prosthesis would protect the connection between implant and bone. Therefore, the relationship between prosthesis materials and the force transmitted through the implant system also needs to be investigated under conditions that resemble the intraoral mechanical environment. Purpose: The purpose of this study was to analyze the fracture strength and modes of temporary prosthesis when a flange or occlusally extended structure were connected on the top of the abutment. Material and method: Modified abutments of winged and bulk design were made by casting the desired wax pattern which is made on the UCLA type plastic cylinder. Temporary crowns were made using templates on the modified abutments, and its fracture toughness and strain were compared to the traditional temporary prosthesis. To evaluate the effect of aging, 5.000 times of thermocycling were performed, and their result was compared to the 24hours specimen result. Results: The following conclusions were drawn from this study: 1. In the fracture toughness test, temporary crown's fracture line located next to the screw hole while modified designs with metal support showed fracture line on the metal and its propagation along the metal-resin interface. 2. Wing and bulk structure didn't show significant difference in the fracture toughness (p>0.05), but wing structure showed stress concentration on the screw hole area compared to bulk structure which showed even stress distribution. 3. In the fracture toughness test after thermocycling, wing and bulk structure showed increased or similar results in metal supported area while off-metal area and temporary crown showed decreased results. 4. In the strain measurement after thermocycling, its value increased in the temporary and bulk structure. However, wing structure showed decreased value in the loading point while increased value in the screw hole area. Conclusion: Wing type design showed compatible result to the bulk type that its application with composite resin prosthesis to the implant dentistry is considered promising.

Mechanical and biological complication rates of the modified lateral-screw-retained implant prosthesis in the posterior region: an alternative to the conventional Implant prosthetic system

  • Lee, Jae-Hong;Lee, Jong-Bin;Kim, Man-Yong;Yoon, Joon-Ho;Choi, Seong-Ho;Kim, Young-Taek
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.2
    • /
    • pp.150-157
    • /
    • 2016
  • PURPOSE. The modified lateral-screw-retained implant prosthesis (LSP) is designed to combine the advantages of screw- and cement-retained implant prostheses. This retrospective study evaluated the mechanical and biological complication rates of implant-supported single crowns (ISSCs) inserted with the modified LSP in the posterior region, and determined how these complication rates are affected by clinical factors. MATERIALS AND METHODS. Mechanical complications (i.e., lateral screw loosening [LSL], abutment screw loosening, lateral screw fracture, and ceramic fracture) and biological complications (i.e., peri-implant mucositis [PM] and peri-implantitis) were identified from the patients' treatment records, clinical photographs, periapical radiographs, panoramic radiographs, and clinical indices. The correlations between complication rates and the following clinical factors were determined: gender, age, position in the jaw, placement location, functional duration, clinical crown-to-implant length ratio, crown height space, and the use of a submerged or nonsubmerged placement procedure. RESULTS. Mechanical and biological complications were present in 25 of 73 ISSCs with the modified LSP. LSL (n=11) and PM (n=11) were the most common complications. The incidence of mechanical complications was significantly related to gender (P=.018). The other clinical factors were not significantly associated with mechanical and biological complication rates. CONCLUSION. Within the limitations of this study, the incidence of mechanical and biological complications in the posterior region was similar for both modified LSP and conventional implant prosthetic systems. In addition, the modified LSP is amenable to maintenance care, which facilitates the prevention and treatment of mechanical and biological complications.

Retrospective study of conical connection dental implant (Ankylos dental Implant). (Conical connection 임프란트(Ankylos dental implant)에 대한 후향적 임상연구)

  • Yang, Byoung-Eun;Song, Sang-Hun;Shim, Hye-Won;Lee, Sang-Min;Kim, Seong-Gon
    • The Journal of the Korean dental association
    • /
    • v.44 no.11 s.450
    • /
    • pp.739-747
    • /
    • 2006
  • Objectives. The standardization of connection between fixture and abutment has not been defined. The success of dental implants was not always depends on connection. However, the connection mechanism is one of the most important things for dental implant treatment success. Most implant systems are very comparable in their design and engineering. They share many common characteristics and have similar strengths and weaknesses. Their significant weaknesses are connection, microgap and the resulting micromovement allowing bacterial contamination and bone loss. In the present study, we investigated the clinical performance of Ankylos implant (conical connection implant) Patients and Methods. The clinical performance of conical connection implant was studied under well-controlled clinical conditions. A total of 133 conical connection implants were placed in 50 patients from April 2005 to March 2006. The mean follow-up loading period of implants which was considered successful was 220$\pm$29 days. We recorded the age, sex, installation site, reason of edentulous region, bone density of installation site, diameter and length of dental implants and periods from installation to uncovering surgery using patients medical chart. Results Four Ankylos implants were lost during pre-loading period. 129 implants provided excellent clinical performance during 220$\pm$29 days on an average. The short-term success rate of this conical connection implant system was 96.99%.

  • PDF

A 5-year retrospective clinical study of the Dentium implants

  • Lee, Jeong-Yol;Park, Hyo-Jin;Kim, Jong-Eun;Choi, Yong-Geun;Kim, Young-Soo;Huh, Jung-Bo;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.4
    • /
    • pp.229-235
    • /
    • 2011
  • PURPOSE. The aim of this retrospective study was to evaluate cumulative survival rate (CSR) of Implantium implants followed for 5 years and association between risk factors and the CSR. MATERIALS AND METHODS. A total of two hundred forty-nine Implantium Implants System (Dentium, Seoul, Korea) placed in ninety-five patients from 2004 to 2009 were investigated with several identified risk factors (sex, systemic disease, smoking, alchohol, reason of tooth loss, length, arch (maxilla or mandible), replace tooth type (incisor, canine, premolar or molar) Kennedy classification, prosthodontic type, prosthodontic design, opposite dentition, abutment type, occlusal material, occlusal unit, splint to tooth, cantilever, other surgery). Clinical examination (mobility, percussion, screw loosening, discomfort, etc.) and radiographic examination data were collected from patient records including all problems during follow-up period according to protocols described earlier. Life table analysis was undertaken to examine the CSR. Cox regression method was conducted to assess the association between potential risk factors and overall CSR. RESULTS. Five of 249 implants were failed. Four of these were lost before loading. The 5-year implant cumulative survival rate was 97.37%. Cox regression analysis demonstrated a significant predictive association between overall CSR and systemic disease, smoking, reason of tooth loss, arch, Kennedy classification and prosthodontic design (P<.05). The screw related complication was rare. Two abutment screw fractures were found. Another complications of prosthetic components were porcelain fracture, resin facing fracture and denture fracture (n=19). CONCLUSION. The 5-year CSR of Implantium implants was 97.37 %. Implant survival may be dependent upon systemic disease, smoking reason of tooth loss, arch, Kennedy classification and prosthodontic design (P<.05). The presence of systemic diseases and combination of other surgical procedures may be associated with increased implant failure.

Biomechanical behavior of CAD/CAM cobalt-chromium and zirconia full-arch fixed prostheses

  • Barbin, Thais;Silva, Leticia Del Rio;Veloso, Daniele Valente;Borges, Guilherme Almeida;Presotto, Anna Gabriella Camacho;Barao, Valentim Adelino Ricardo;Groppo, Francisco Carlos;Mesquita, Marcelo Ferraz
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.329-337
    • /
    • 2020
  • PURPOSE. To verify the influence of computer-aided design/computer-aided manufacturing (CAD/CAM) implant-supported prostheses manufactured with cobalt-chromium (Co-Cr) and zirconia (Zr), and whether ceramic application, spark erosion, and simulation of masticatory cycles modify biomechanical parameters (marginal fit, screw-loosening torque, and strain) on the implant-supported system. MATERIALS AND METHODS. Ten full-arch fixed frameworks were manufactured by a CAD/CAM milling system with Co-Cr and Zr (n=5/group). The marginal fit between the abutment and frameworks was measured as stated by single-screw test. Screw-loosening torque evaluated screw stability, and strain analysis was explored on the implant-supported system. All analyses were performed at 3 distinct times: after framework manufacturing; after ceramic application in both materials' frameworks; and after the spark erosion in Co-Cr frameworks. Afterward, stability analysis was re-evaluated after 106 mechanical cycles (2 Hz/150-N) for both materials. Statistical analyses were performed by Kruskal-Wallis and Dunn tests (α=.05). RESULTS. No difference between the two materials was found for marginal fit, screwloosening torque, and strain after framework manufacturing (P>.05). Ceramic application did not affect the variables (P>.05). Spark erosion optimized marginal fit and strain medians for Co-Cr frameworks (P<.05). Screw-loosening torque was significantly reduced by masticatory simulation (P<.05) regardless of the framework materials. CONCLUSION. Co-Cr and Zr frameworks presented similar biomechanical behavior. Ceramic application had no effect on the biomechanical behavior of either material. Spark erosion was an effective technique to improve Co-Cr biomechanical behavior on the implant-supported system. Screw-loosening torque was reduced for both materials after masticatory simulation.

Full mouth rehabilitation with fixed implant-supported prosthesis using temporary denture and double digital scanning technique: a case report (임시 의치와 이중 디지털 스캐닝 기법을 활용한 전악 고정성 임플란트 수복 증례)

  • Seok-Hyun Shin;Chan-Ik Park;Se-Ha Kang;Ji-Eun Moon;Min-Seok Oh;Chul-Min Park;Woo-Jin Jeon;Seong-Gu Han;Sun-Jae Kim;Su-Jin Choi
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.3
    • /
    • pp.245-256
    • /
    • 2023
  • When restoring with a dental digital system for implant-supported prosthesis, a double digital scanning technique is required: an intraoral scan of the three-dimensional implant location and intraoral scan after placement of temporary denture or provisional prosthesis. During the intraoral scan, the use of scan body as a stable landmark can improve the accuracy of digital impression and simplify laboratory process. In this case, a full-digital system was used to plan and fabricate a custom abutment, provisional prosthesis, and definitive prosthesis. After implant placement, the scan area of the intraoral scan body connected with implant and the intraoral scan body marked on the inside of temporary denture were superimposed. Out of the superimposed files, a custom abutment and provisional prosthesis were fabricated which match the vertical dimension of temporary denture, and definitive prosthesis was fabricated based on provisional prosthesis. We report this case because result has been functionally and esthetically satisfactory by using vertical dimension and central relation set during the fabrication of temporary denture to the definitive prosthesis.

Comparative study on stress distribution around internal tapered connection implants according to fit of cement- and screw-retained prostheses

  • Lee, Mi-Young;Heo, Seong-Joo;Park, Eun-Jin;Park, Ji-Man
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.312-318
    • /
    • 2013
  • PURPOSE. The aim of this study was to compare the passivity of implant superstructures by assessing the strain development around the internal tapered connection implants with strain gauges. MATERIALS AND METHODS. A polyurethane resin block in which two implants were embedded served as a measurement model. Two groups of implant restorations utilized cement-retained design and internal surface of the first group was adjusted until premature contact between the restoration and the abutment completely disappeared. In the second group, only nodules detectable to the naked eye were removed. The third group employed screw-retained design and specimens were generated by computer-aided design/computer-aided manufacturing system (n=10). Four strain gauges were fixed on the measurement model mesially and distally to the implants. The strains developed in each strain gauge were recorded during fixation of specimens. To compare the difference among groups, repeated measures 2-factor analysis was performed at a level of significance of ${\alpha}$=.05. RESULTS. The absolute strain values were measured to analyze the magnitude of strain. The mean absolute strain value ranged from 29.53 to 412.94 ${\mu}m/m$ at the different strain gauge locations. According to the result of overall comparison, the cement-retained prosthesis groups exhibited significant difference. No significant difference was detected between milled screw-retained prostheses group and cement-retained prosthesis groups. CONCLUSION. Within the limitations of the study, it was concluded that the cement-retained designs do not always exhibit lower levels of stress than screw-retained designs. The internal adjustment of a cement-retained implant restoration is essential to achieve passive fit.