• Title/Summary/Keyword: Implant-abutment design

Search Result 108, Processing Time 0.022 seconds

A COMPARATIVE STUDY OF THE 1-PIECE AND 2-PIECE CONICAL ABUTMENT JOINT: THE STRENGTH AND THE FATIGUE RESISTANCE

  • Kwon, Taek-Ka;Yang, Jae-Ho;Kim, Sung-Hun;Han, Jung-Suk;Lee, Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.780-786
    • /
    • 2007
  • Statement of problem. The performance and maintenance of implant-supported prostheses are primarily dependent upon load transmission both at the bone-to-implant interface and within the implant-abutment-prosthesis complex. The design of the interface between components has been shown to have a profound influence on the stability of screw joints. Purpose. The Purpose of this study was to compare the strength and the fatigue resistance of 1-piece and 2-piece abutment connected to oral implant, utilizing an internal conical interface. Material and methods. Twenty $Implatium^{(R)}$ tapered implants were embedded to the top of the fixture in acrylic resin blocks. Ten $Combi^{(R)}$(1-piece) and $Dual^{(R)}$(2-piece) abutments of the same dimension were assembled to the implant, respectively. The assembled units were mounted in a testing machine. A load was applied perpendicular to the long axis of the assemblies and the loading points was at the distance of 7mm from the block surface. Half of 1-piece and 2-piece abutment-implant units were tested for the evaluation of the bending strength, and the others were cyclically loaded for the evaluation of the fatigue resistance until plastic deformation occurred. Nonparametric statistical analysis was performed for the results. Results. Mean plastic and maximum bending moment were $1,900{\pm}18Nmm,\;3,609{\pm}106Nmm$ for the 1-piece abutment, and $1,250{\pm}31Nmm,\;2,688{\pm}166Nmm$ for the 2-piece abutment, respectively. Mean cycles and standard deviation when implant-abutment joint showed a first plastic deformation were $238,610{\pm}44,891$. cycles for the 1-piece abutment and $9,476{\pm}3,541$ cycles for the 2-piece abutment. A 1-piece abutment showed significantly higher value than a 2-piece abutment in the first plastic bending moment (p<.05), maximum bending moment (p<.05) and fatigue strength (p<.05). Conclusion. Both 1-piece and 2-piece conical abutment had high strength and fatigue resistance and this suggests long-term durability without mechanical complication. However, the 1-piece conical abutment was more stable than the 2-piece conical abutment in the strength and the fatigue resistance.

PHOTOELASTIC ANALYSIS OF STRESSES INDUCED BY VARIOUS SUPERSTRUCTURES ON THE ENDOSTEAL IMPLANT (치과 임플랜트 보철 수복시 각 상부구조의 형태에 따라 발생되는 응력의 광탄성학적 분석)

  • Choi Young-Hee;Cho In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.4
    • /
    • pp.679-686
    • /
    • 1993
  • The osseointegrated implant conducts the stress directly to the bone due to lack of cushoning effect of periodontal ligament. So, the design and material quality of superstructure plays an important role in resolution and diffusion of stress. Recently, the various superstructures have been developed to improve esthetics and resolve various complicated conditions. The purpose of this study was to evaluate the stress induced by various system on the osseointegrated implant using UCLA abutment, EsthetiCone abutment, Anatomic abutment as well as Branemark conventional abutment. The stress distribution was evaluated by the photoelastic method which can simultaneously observe all around stress distribution. The superstructures embedded in epoxy resin specimen were loaded at various angle with a force of 15Kg to analyse the stress distribution of the fixture. The results of this study were obtained as follows : 1. Under vertical loading, the large and broad stress was distributed below the fixture in all systems. 2. The fringe order of the stress was increased in proportion to tillting the specimen. The largest stress was shown in 25 angled degree tilting case. 3. The Branemark conventional abutment showed the lowest value, and EsthetiCone abutment, Anatomic abutment and UCLA abutment showed the stress value in accending order.

  • PDF

Influence of abutment height and convergence angle on the retrievability of cement-retained implant prostheses with a lingual slot

  • Choi, Kyu-Hyung;Son, KeunBaDa;Lee, Du-Hyeong;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.381-387
    • /
    • 2018
  • PURPOSE. Cement-retained implant prostheses can lack proper retrievability during repair, and residual cement can cause peri-implantitis. The purpose of this in vitro study was to evaluate the influence of abutment height and convergence angle on the retrievability of cement-retained implant prostheses with lingual slots, known as retrievable cement-type slots (RCS). MATERIALS AND METHODS. We fabricated six types of titanium abutments (10 of each type) with two different heights (4 mm and 6 mm), three different convergence angles ($8^{\circ}$, $10^{\circ}$, and $12^{\circ}$), a sloped shoulder margin (0.6 mm depth), a rectangular shape ($6mm{\times}6.5mm$) with rounded edges, and a rectangular ledge ($2mm{\times}1mm$) for the RCS. One monolithic zirconia crown was fabricated for each abutment using a dental computer-aided design/computer-aided manufacturing system. The abutments and crowns were permanently cemented together with dual-curing resin cement, followed by 24 hours in demineralized water at room temperature. Using a custom-made device with a slot driver and torque gauge, we recorded the torque ($N{\cdot}cm$) required to remove the crowns. Statistical analysis was conducted using multiple regression analysis and Mann-Whitney U tests (${\alpha}=.05$). RESULTS. Removal torques significantly decreased as convergence angles increased. Multiple regression analysis showed no significant interaction between the abutment height and the convergence angle (Durbin-Watson ratio: 2.186). CONCLUSION. Within the limitations of this in vitro study, we suggest that the retrievability of cement-retained implant prostheses with RCS can be maintained by adjusting the abutment height and convergence angle, even when they are permanently cemented together.

Long-term cumulative survival and mechanical complications of single-tooth Ankylos Implants: focus on the abutment neck fractures

  • Shim, Hye Won;Yang, Byoung-Eun
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.6
    • /
    • pp.423-430
    • /
    • 2015
  • PURPOSE. To evaluate the cumulative survival rate (CSR) and mechanical complications of single-tooth $Ankylos^{(R)}$ implants. MATERIALS AND METHODS. This was a retrospective clinical study that analyzed 450 single $Ankylos^{(R)}$ implants installed in 275 patients between December 2005 and December 2012. The main outcomes were survival results CSR and implant failure) and mechanical complications (screw loosening, fracture, and cumulative fracture rate [CFR]). The main outcomes were analyzed according to age, sex, implant length or diameter, bone graft, arch, and position. RESULTS. The 8-year CSR was 96.9%. Thirteen (2.9%) implants failed because of early osseointegration failure in 3, marginal bone loss in 6, and abutment fracture in 4. Screw loosening occurred in 10 implants (2.2%), and 10 abutment fractures occurred. All abutment fractures were located in the neck, and concurrent screw fractures were observed. The CSR and rate of screw loosening did not differ significantly according to factors. The CFR was higher in middle-aged patients (5.3% vs 0.0% in younger and older patients); for teeth in a molar position (5.8% vs 0.0% for premolar or 1.1% for anterior position); and for larger-diameter implants (4.5% for 4.5 mm and 6.7% for 5.5 mm diameter vs 0.5% for 3.5 mm diameter) (all P<.05). CONCLUSION. The $Ankylos^{(R)}$ implant is suitable for single-tooth restoration in Koreans. However, relatively frequent abutment fractures (2.2%) were observed and some fractures resulted in implant failures. Middle-aged patients, the molar position, and a large implant diameter were associated with a high incidence of abutment fracture.

INFLUENCE OF IMPLANT-ABUTMENT INTERFACE DESIGN, IMPLANT DIAMETER AND PROSTHETIC TABLE WIDTH ON STRENGTH OF IMPLANT-ABUTMENT INTERFACE : THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS (임플랜트의 지대주 연결방식, 임플랜트의 직경 및 지대주 연결부위의 직경 차이에 따른 응력분포에 관한 삼차원 유한요소분석)

  • Oh Se-Woong;Yang Jae-Ho;Lee Sun-Hyung;Han Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.393-404
    • /
    • 2003
  • Statement of problem. Higher incidence of prosthetic complications such as screw loosening, screw fracture has been reported for posterior single tooth implant. So, there is ongoing research regarding stability of implant-abutment interface. One of those research is increasing the implant diameter and prosthetic table width to improve joint stability. In another part of this research, internal conical type implant-abutment interface was developed and reported joint strength is higher than traditional external hex interface. Purpose. The purpose of this study is to compare stress distribution in single molar implant between external hex butt joint implant and internal conical joint implant when increasing the implant diameter and prosthetic table width : 4mm diameter, 5mm diameter, 5mm diameter/6mm prosthetic table width. Material and method. Non-linear finite element models were created and the 3-dimensional finite element analysis was performed to see the distribution of stress when 300N static loading was applied to model at $0^{\circ},\;15^{\circ},\;30^{\circ}$ off-axis angle. Results. The following results were obtained : 1. Internal conical joint showed lower tensile stress value than that of external hex butt joint. 2. When off-axis loading was applied, internal conical joint showed more effective stress distribution than external hex butt joint. 3. External hex butt joint showed lower tensile stress value when the implant diameter was increased. 4. Internal conical joint showed lower tensile stress value than external hex butt joint when the implant diameter was increased. 5. Both of these joint mechanism showed lower tensile stress value when the prosthetic table width was increased. Conclusion. Internal conical joint showed more effective stress distribution than external hex joint. Increasing implant diameter showed more effective stress distribution than increasing prosthetic table width.

Effects of titanium and PEEK abutments on implant-supported dental prosthesis and stress distribution of surrounding bones: three-dimensional finite element analysis (티타늄 및 PEEK 지대주 소재가 임플란트 유지 수복물 및 주위 지지골 응력 분포에 미치는 영향: 3차원 유한요소해석)

  • Hong, Min-Ho
    • Journal of Technologic Dentistry
    • /
    • v.44 no.3
    • /
    • pp.67-75
    • /
    • 2022
  • Purpose: This study aimed to comparatively evaluate the stress distribution of bones surrounding the implant system to which both titanium and polyetheretherketone (PEEK) abutments are applied using a three-dimensional finite element analysis. Methods: The three-dimensional implant system was designed by the computer-aided design program (CATIA; Dassault Systemes). The discretization process for setting nodes and elements was conducted using the HyperMesh program (Altair), after finishing the design of each structure for the customized abutment implant system. The results of the stress analysis were drawn from the Abaqus program (Dassault Systèmes). This study applied 200 N of vertical load and 100 N of oblique load to the occlusal surface of a mandibular first molar. Results: Under external load application, the PEEK-modeled dental implant showed the highest von Mises stress (VMS). The lowest VMS was observed in the Ti-modeled abutment screws. In all groups, the VMS was observed in the crestal regions or necks of implants. Conclusion: The bones surrounding the implant system to which the PEEK abutment was applied, such as the cortical and trabecular bones, showed stress distribution similar to that of the titanium implant system. This finding suggests that the difference in the abutment materials had no effect on the stress distribution of the bones surrounding implants. However, the PEEK abutments require mechanical and physical properties improved for clinical application, and the clinical application is thought to be limited.

Implant-assisted removable partial denture using freely removable abutment in a fully edentulous patient: A case report (완전 무치악 환자에서 자유 착탈가능 임플란트 지대주를 이용한 임플란트 융합 국소의치 수복증례)

  • Oh, You-Kyoung;Jeong, Chang-Mo;Yun, Mi-Jung;Lee, So-Hyoun;Lee, Hyeon-Jong;Huh, Jung-Bo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.1
    • /
    • pp.58-66
    • /
    • 2020
  • Implant-Assisted Removable Partial Dentures (IARPDs) treatment is being performed in a fully edentulous patient using implant surveyed prosthesis as an abutment. Implant-supported prosthesis as an abutment of IARPDs is classified into screw-retained and cement-retained type according to the retention type, and each has advantages and disadvantages. The EZ crown system (Samwon DMP, Yangsan, Korea) has a cylinder combined with abutment, and the nickel-titanium spring in this cylinder provides a constant force on the zirconia ball to obtain retention in EZ crown system. In this patient, the natural abutment teeth of the mandibular overdenture was hopeless. We planned implant assisted removable partial denture using anterior implant surveyed prosthesis considering functional and esthetical rehabilitation, cost and patient's needs. When fabricating IARPDs using implant as abutment, we could compensate for the shortcomings of existing implant-supported prosthesis retention type and made the design of removable partial denture easy due to using EZ crown system.

Mechanical analysis of conventional and small diameter conical implant abutments

  • Moris, Izabela Cristina Mauricio;Faria, Adriana Claudia Lapria;De Mattos, Maria Da Gloria Chiarello;Ribeiro, Ricardo Faria;Rodrigues, Renata Cristina Silveira
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.3
    • /
    • pp.158-161
    • /
    • 2012
  • PURPOSE. The aim of the present study was to evaluate if a smaller morse taper abutment has a negative effect on the fracture resistance of implant-abutment connections under oblique compressive loads compared to a conventional abutment. MATERIALS AND METHODS. Twenty morse taper conventional abutments (4.8 mm diameter) and smaller abutments (3.8 mm diameter) were tightened (20 Ncm) to their respective implants ($3.5{\times}11$ mm) and after a 10 minute interval, implant/abutment assemblies were subjected to static compressive test, performed in a universal test machine with 1 mm/min displacement, at $45^{\circ}$ inclination. The maximum deformation force was determined. Data were statistically analyzed by student t test. RESULTS. Maximum deformation force of 4.8 mm and 3.8 mm abutments was approximately 95.33 kgf and 95.25 kgf, respectively, but no fractures were noted after mechanical test. Statistical analysis demonstrated that the evaluated abutments were statistically similar (P=.230). CONCLUSION. Abutment measuring 3.8 mm in diameter (reduced) presented mechanical properties similar to 4.8 mm (conventional) abutments, enabling its clinical use as indicated.

A VITRO STUDY OF RETAINED SCREW STABILITY BY VARIOUS CONNECTION DESIGNS BETWEEN FIXTURE AND ABUTMENT IN IMPLANT DENTISTRY (임플란트 고정체와 지대주 연결 형태의 차이에 따른 유지 나사 안정성에 대한 연구)

  • Yang Jae-Sik;Vang Mong-Sook;Jo Gyu-Jong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.1
    • /
    • pp.83-93
    • /
    • 2004
  • Statement of problem : Since the concept of osseointegrated dental implant by $Br{\aa}nemark$ et al was first applied to mandibular full edentulous patients. Recently it is considerated the first treatment option on missing teeth. A common problem associated with dental implant restorations is loosening of screws that retain the prosthesis to the abutment and the abutment to the implant fixture. Purpose : This study is to examine the influence on screw loosening of implant-abutment designs. Material and methods : External hex, cone screw, beveled hex, cam cylinder, cylinder hex by means of evaluating the loosening torques, with respect to a range of tightening torques after repeated loading. Result : 1. Cone screw, beveled hex groups are the highest initial tightening rate and cylinder hex, external hex groups are the lowest initial tightening rate (p < 0.05). 2. Cone screw groups are the highest after repeated loading tightening rate and cylinder hex groups are lowest after repeated loading tightening rate(p < 0.05). 3. Cone screw groups have the highest initial stability and anal stability. 4. All groups are decreased tightening rate after repeated loading.

Influence of implant-abutment connection structure on peri-implant bone level in a second molar: A 1-year randomized controlled trial

  • Kim, Jin-Cheol;Lee, Jungwon;Kim, Sungtae;Koo, Ki-Tae;Kim, Hae-Young;Yeo, In-Sung Luke
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.3
    • /
    • pp.147-154
    • /
    • 2019
  • PURPOSE. This study aimed to evaluate the effect of two different implant-abutment connection structures with identical implant design on peri-implant bone level. MATERIALS AND METHODS. This clinical study was a patient-blind randomized controlled trial following the CONSORT 2010 checklists. This trial was conducted in 24 patients recruited between March 2013 and July 2015. Implants with internal friction connection were compared to those with external hex connection. One implant for each patient was installed, replacing the second molar. Implant-supported crowns were delivered at four months after implant insertion. Standardized periapical radiographs were taken at prosthesis delivery (baseline), and one year after delivery. On the radiographs, distance from implant shoulder to first bone-to-implant contact (DIB) and peri-implant area were measured, which were the primary and secondary outcome, respectively. RESULTS. Eleven external and eleven internal implants were analyzed. Mean changes of DIB from baseline to 1-year postloading were 0.59 (0.95) mm for the external and 0.01 (0.68) mm for the internal connection. Although no significant differences were found between the two groups, medium effect size was found in DIB between the connections (Cohen's d = 0.67). CONCLUSION. Considering the effect size in DIB, this study suggested the possibility of the internal friction connection structure for more effective preservation of marginal bone.