• Title/Summary/Keyword: Implant surgical guide

Search Result 71, Processing Time 0.028 seconds

Prosthetic rehabilitation with digital implant planning for a minimally invasive surgery approach (디지털 임플란트 플래닝을 통한 최소침습 보철수복 증례)

  • Jeong, Areum;Lee, Younghoo;Hong, Seoung-Jin;Paek, Janghyun;Noh, Kwantae;Pae, Ahran;Kim, Hyeong-Seob;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.3
    • /
    • pp.283-292
    • /
    • 2022
  • For fixed prosthetic treatment using implants, implants must be placed in a suitable location for prosthetic treatment. During surgery, minimally invasive prosthetic restoration is possible using a flapless method using a surgical guide. The patient in this case was an 86-year-old male patient who wanted treatment due to discomfort when using conventional dentures. Due to systemic disease, the patient had difficulty using removable local dentures, so full dentures for the maxilla and fixed implants for the mandible were restored. Because there is a high risk of bleeding due to systemic disease, the implant was placed in a flapless method using a surgical guide. Finally, prostheses were fabricated with maxillary full denture and mandibular screw-retained zirconia, and this report shows satisfactory esthetic and functional recovery.

Implant Supported Fixed Restoration for Maxillary Edentulism using CAD/CAM Guided Implant Surgery (NobelGuide$^{TM}$) and Immediate Loading (상악 완전 무치악 환자의 CAD/CAM 을 이용한 임플란트 식립(NobelGuide$^{TM}$) 및 즉시하중 후 고정성 보철수복 증례)

  • Huh, Yoon-Hyuk;Yi, Yang-Jin;Kim, Dae-Gon;Cho, Lee-Ra;Park, Chan-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.4
    • /
    • pp.423-439
    • /
    • 2012
  • This case report described a technique utilizing a computer-aided design (CAD)/computer-aided machining (CAM) - guided surgical implant placement and prefabricated temporary fixed prosthesis for an immediately loaded restoration. The advantages of CAD/CAM guided implant procedures are flapless, minimally invasive surgery and shorter surgery time. With this technique, less postoperative morbidity and delivery of prosthesis for immediate function would be possible. A patient with an edentulous maxilla received 8 implants in maxilla using CAD/CAM surgical templates. Prefabricated provisional maxillary implant supported fixed prosthesis were connected immediately after implant installation. Provisional prosthesis was evaluated for aesthetics, function during 6 months. Definitive implant supported fixed porcelain fused metal bridges were fabricated.

Evaluation of the accuracy of two different surgical guides in dental implantology: stereolithography fabricated vs. positioning device fabricated surgical guides (제작방법에 따른 임플란트 수술 가이드의 정확성비교: stereolithography와 positioning device로 제작한 수술 가이드)

  • Kwon, Chang-Ryeol;Choi, Byung-Ho;Jeong, Seung-Mi;Joo, Sang-Dong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.4
    • /
    • pp.271-278
    • /
    • 2012
  • Purpose: Recently implant surgical guides were used for accurate and atraumatic operation. In this study, the accuracy of two different types of surgical guides, positioning device fabricated and stereolithography fabricated surgical guides, were evaluated in four different types of tooth loss models. Materials and methods: Surgical guides were fabricated with stereolithography and positioning device respectively. Implants were placed on 40 models using the two different types of surgical guides. The fitness of the surgical guides was evaluated by measuring the gap between the surgical guide and the model. The accuracy of surgical guide was evaluated on a pre- and post-surgical CT image fusion. Results: The gap between the surgical guide and the model was $1.4{\pm}0.3mm$ and $0.4{\pm}0.3mm$ for the stereolithography and positioning device surgical guide, respectively. The stereolithography showed mesiodistal angular deviation of $3.9{\pm}1.6^{\circ}$, buccolingual angular deviation of $2.7{\pm}1.5^{\circ}$ and vertical deviation of $1.9{\pm}0.9mm$, whereas the positioning device showed mesiodistal angular deviation of $0.7{\pm}0.3^{\circ}$, buccolingual angular deviation of $0.3{\pm}0.2^{\circ}$ and vertical deviation of $0.4{\pm}0.2mm$. The differences were statistically significant between the two groups (P<.05). Conclusion: The laboratory fabricated surgical guides using a positioning device allow implant placement more accurately than the stereolithography surgical guides in dental clinic.

Mixed reality visualization in shoulder arthroplasty: is it better than traditional preoperative planning software?

  • Sejla Abdic;Nicholas J. Van Osch;Daniel G. Langohr;James A. Johnson;George S. Athwal
    • Clinics in Shoulder and Elbow
    • /
    • v.26 no.2
    • /
    • pp.117-125
    • /
    • 2023
  • Background: Preoperative traditional software planning (TSP) is a method used to assist surgeons with implant selection and glenoid guide-pin insertion in shoulder arthroplasty. Mixed reality (MR) is a new technology that uses digital holograms of the preoperative plan and guide-pin trajectory projected into the operative field. The purpose of this study was to compare TSP to MR in a simulated surgical environment involving insertion of guide-pins into models of severely deformed glenoids. Methods: Eight surgeons inserted guide-pins into eight randomized three-dimensional-printed severely eroded glenoid models in a simulated surgical environment using either TSP or MR. In total, 128 glenoid models were used and statistically compared. The outcomes compared between techniques included procedural time, difference in guide-pin start point, difference in version and inclination, and surgeon confidence via a confidence rating scale. Results: When comparing traditional preoperative software planning to MR visualization as techniques to assist surgeons in glenoid guide pin insertion, there were no statistically significant differences in terms of mean procedure time (P=0.634), glenoid start-point (TSP=2.2±0.2 mm, MR=2.1±0.1 mm; P=0.760), guide-pin orientation (P=0.586), or confidence rating score (P=0.850). Conclusions: The results demonstrate that there were no significant differences between traditional preoperative software planning and MR visualization for guide-pin placement into models of eroded glenoids. A perceived benefit of MR is the real-time intraoperative visibility of the surgical plan and the patient's anatomy; however, this did not translate into decreased procedural time or improved guide-pin position.

The application of "bone window technique" using piezoelectric saws and a CAD/CAM-guided surgical stent in endodontic microsurgery on a mandibular molar case

  • Kim, Ukseong;Kim, Sunil;Kim, Euiseong
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.3
    • /
    • pp.27.1-27.9
    • /
    • 2020
  • Apical surgery for a mandibular molar is still challenging for many reasons. This report describes the applications of computer-guided cortical 'bone-window technique' using piezoelectric saws that prevented any nerve damage in performing endodontic microsurgery of a mandibular molar. A 49-year-old woman presented with gumboil on tooth #36 (previously endodontically treated tooth) and was diagnosed with chronic apical abscess. Periapical lesions were confirmed using cone-beam computed tomography (CBCT). Endodontic microsurgery for the mesial and distal roots of tooth #36 was planned. Following the transfer of data of the CBCT images and the scanned cast to an implant surgical planning program, data from both devices were merged. A surgical stent was designed, on the superimposed three-dimensional model, to guide the preparation of a cortical window on the buccal side of tooth #36. Endodontic microsurgery was performed with a printed surgical template. Minimal osteotomy was required and preservation of the buccal cortical plate rendered this endodontic surgery less traumatic. No postoperative complications such as mental nerve damage were reported. Window technique guided by a computer-aided design/computer-aided manufacture based surgical template can be considerably useful in endodontic microsurgery in complicated cases.

Planning of Multiple Tooth Implant Placement Using the Standardized Data in Teeth Size and Position (표준 치아 크기 및 배열 정보를 이용한 다중 치아 임플란트 식립계획 방안)

  • Park, Hyung-Wook;Park, Sang-Jin;Park, Hyungjun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.4
    • /
    • pp.348-356
    • /
    • 2015
  • It is important to devise methods for assisting dentists to consistently determine implant positions and directions and to accurately perform drilling tasks during dental implant surgery. In this paper, we propose a novel approach to tooth implant placement planning which deals with the determination of the positions and directions of multiple implant fixtures for a set of missing mandibular teeth and suggests the selection of the sizes and types of the implant fixtures. We combine Korean standard data in the sizes and positions of human teeth with the patient specific 3D models of mandibular jawbones, nerve curves, and neighboring teeth around the missing teeth in order to determine the positions and directions of the implant fixtures for the missing teeth. Using the geometric and spatial information of the jawbones, the teeth and the implant fixtures, we can construct the 3D models of surgical guide stents which are crucial to perform drilling tasks with ease and accuracy. Adopted in 3D simulation of dental implant placement, the approach can provide surgeon students with good educational contents. We also expect that, with further work, the approach can be used as a useful tool to plan for dental implant surgery.

Computer-guided implant surgery and immediate provisionalization by chair-side CAD-CAM: A case report (진료실 CAD-CAM에 의한 컴퓨터 가이드 임플란트 수술과 즉시 임시보철치료: 증례보고)

  • Hyun, Sang Woo;Lee, sungbok Richard;Lee, Suk Won;Cho, Young Eun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.4
    • /
    • pp.478-486
    • /
    • 2021
  • This report demonstrates a method of generating a chair-side and computer-aided template for implant surgery based on the Top-Down and restoration-driven concept. Compared to the traditional CAD-CAM process which requires multiple steps to be taken between dental clinic and laboratory, this alternative procedure, VARO guide system (VARO Guide, CAD, Pre-Guide, VARO-mill, NeoBiotech, Seoul, South Korea) enables accurate and patient-friendly implant surgery as well as immediate provisional restoration in a single visit. First, bite-registration at centric jaw relation and CBCT were taken using the Pre-Guide. The CBCT data was then reorganized directly through the chair-side CAD, and we could determine the most appropriate 3-dimensional position of implant. The STL file was extracted and put into the chair-side CAM (VARO-mill) to fabricate a VARO. This surgical guide allowed the implants to be accurately positioned into the planned sites within an hour.

Implant Fixture Installation in the Anterior Mandible by Use of a Mucosa Supported Surgical Template Based on Computer Assisted Treatment Planning (컴퓨터보조 기반 점막지지 서지컬템프레이트를 이용한 하악전치부 임플란트 식립)

  • Lee, Jee-Ho;Kim, Soung-Min;Kim, Myung-Joo;Park, Jung-Min;Seo, Mi-Hyun;Myoung, Hoon;Lee, Jong-Ho;Kim, Myung-Jin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.2
    • /
    • pp.158-165
    • /
    • 2011
  • A 73-year-old Korean female patient with a fully edentulous mandible was planned to have five implant fixtures installed in the anterior mandible for the fixed prosthesis. After 3-dimensional (3D) computed tomographic scanning was transferred to OnDemand3D$^{(R)}$ (Cybermed Co., Seoul, Korea) software program for the virtual planning, five fixtures of MK III Groovy RP implants of Branemark System$^{(R)}$ (Nobel Biocare AB Co., Goteborg, Sweden) were installed in the anterior mandible between both mental foramens using In2Guide$^{(R)}$ (CyberMed Co., Seoul, Korea) mucosa-supported surgical template with Quick Guide Kit$^{(R)}$ (Osstem Implant Co., Seoul, Korea) systems. Fixture installations were completed successfully without any complications, such as mental nerve injury, bony bleedings, fenestrations and other unexpected events. Postoperative computed tomographic scans were aligned and fused to the planned implant, then angular and linear deviations were compared with the planned virtual implants. The mean angular deviation between the planned and actual implant axes was $3.42{\pm}1.336^{\circ}$. The mean distance between the planned and actual implant at the neck area was $0.544{\pm}0.290$ mm horizontally and $0.118{\pm}0.079$ mm vertically. The average distance between the planned and actual implant at the apex area was $1.166{\pm}0.566$ mm horizontally and $0.14{\pm}0.091$ mm vertically. These results could be considered more precise and accurate than previous reports, and even our recent results. The entire procedures of this case are reported and reviewed.

Clinical problems of computer-guided implant surgery

  • Moon, Seong-Yong;Lee, Kyoung-Rok;Kim, Su-Gwan;Son, Mee-Kyoung
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.15.1-15.6
    • /
    • 2016
  • Background: The utilization of a cone-beam computed tomography (CT)-assisted surgical template allows for predictable results because implant placement plans can be performed in the actual surgery. In order to assess the accuracy of the CT-guided surgery, angular errors and shoulder/apex distance errors were evaluated by data fusion from before and after the placement. Methods: Computer-guided implant surgery was performed in five patients with 19 implants. In order to analyze differences of the implant fixture body between preoperative planned implant and postoperative placed implant, angular error and distance errors were evaluated. Results: The mean angular errors between the preoperative planned and postoperative placed implant was $3.84^{\circ}{\pm}1.49^{\circ}$; the mean distance errors between the planned and placed implants were $0.45{\pm}0.48mm$ horizontally and $0.63{\pm}0.51mm$ vertically at the implant neck and $0.70{\pm}0.63mm$ horizontally and $0.64{\pm}0.57mm$ vertically at the implant apex for all 19 implants. Conclusions: It is important to be able to utilize these methods in actual clinical settings by improving the various problems, including the considerations of patient mouth opening limitations, surgical guide preparation, and fixation.

Rehabilitation of Partial Edentulism with a Crown-type Implant-assisted Removable Partial Denture through Guided Implant Surgery: A Case Report with a 12-month Follow-up

  • Jun, Ji Hoon;Oh, Kyung Chul;Li, Jiayi;Moon, Hong Seok
    • Journal of Korean Dental Science
    • /
    • v.15 no.1
    • /
    • pp.75-83
    • /
    • 2022
  • Crown-type implant-assisted removable partial dentures (CIRPDs) can be a feasible treatment option for partially edentulous patients. Here we report a case with remaining unilateral mandibular teeth. Two implants were placed in the posterior portion of the mandible using a surgical guide, and a distal-extension removable partial denture with implant-supported surveyed crowns was fabricated. After 12 months, both the abutment teeth and implants were in good condition. The treatment outcomes were satisfactory in terms of masticatory function and esthetics. The advantages of CIRPDs and considerations for obtaining successful clinical outcomes with these dentures are also discussed.