• Title/Summary/Keyword: Impermeability

Search Result 64, Processing Time 0.022 seconds

Physico-chemical Properties of Disturbed Plastic Film House Soils under Cucumber and Grape Cultivation as Affected by Artificial Accumulation History

  • Han, Kyung-Hwa;Ibrahim, Muhammad;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hee-Rae;Hur, Seung-Oh;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.2
    • /
    • pp.105-118
    • /
    • 2015
  • This study was carried out to investigate the effects of profile disturbance with different artificial accumulation history on physico-chemical properties of soil under plastic film house. The investigations included soil profile description using soil column cylinder auger F10cm x h110cm, in situ and laboratory measurements of soil properties at five sites each at the cucumber (Site Ic ~ Vc) and grape (Site Ig ~ Vg) plastic film houses with artificial soil accumulation. The sites except sites Ic, IVc, IVg and Vg, belong to ex-paddy area. The types of accumulates around root zone included sandy loam soil for 3 sites, loam soil for 1 site, saprolite for 2 sites, and multi-layer with different accumulates for 3 sites. Especially, Site IIg has mixed plow zone (Ap horizon) with original soil and saprolite, whereas disturbed soil layers of the other sites are composed of only external accumulates. The soil depth disturbed by artificial accumulation ranged from 20 cm, for Site IIg, to whole measured depth of 110 cm, for Site IVc, Vc, and Site IVg. Elapsed time from artificially accumulation to investigation time ranged from 3 months, Site IIc, to more than 20 years, Site Vg, paddy-soil covering over well-drained upland soil during land leveling in 1980s. Disturbed top layer in all sites except Site Vg had no structure, indicating low structural stability. In situ infiltration rate had no correlation with texture or organic matter content, but highest value with highest variability in Site IIIc, the shortest elapsed time since sandy loam soil accumulation. Relatively low infiltration rate was observed in sites accumulated by saprolite with coarse texture, presumably because its low structural stability in the way of weathering process could result in relatively high compaction in agro-machine work or irrigation. In all cucumber sites, there were water-transport limited zone with very low permeable or impermeability within 50 cm under soil surface, but Site IIg, IIIg, and Vg, with relatively weak disturbance or structured soil, were the reverse. We observed the big change in texture and re-increase of organic matter content, available phosphate, and exchangeable cations between disturbed layer and original soil layer. This study, therefore, suggest that the accumulation of coarse material such as saprolite for cultivating cash crop under plastic film house might not improve soil drainage and structural stability, inversely showing weaker disturbance of original soil profile with higher drainage.

Herbicidal Activity of Chrysophanic Acid in Semi-field Condition (천연물질 Chrysophanic Acid의 포장조건 제초 활성)

  • Choi, Jung-Sup;Jang, Hyun-Woo;Seo, Bo-Ram;Hwang, Hyun-Jin;Kim, Jae-Deog;Kim, Jin-Seog;Chun, Jae-Chul;Kim, Song-Mun
    • Korean Journal of Weed Science
    • /
    • v.30 no.4
    • /
    • pp.429-436
    • /
    • 2010
  • Herbicidal activity and characteristics of chrysophanic acid were investigated in semi-field condition. At early and middle post-emergence, Trifolium repens appeared to be very susceptible to chrysophanic acid of $2,000{\mu}g\;mL^{-1}$. However, herbicidal activity of chrysophanic acid of $2,000{\mu}g\;mL^{-1}$ estimated by visual injury to Artemisia princeps was not caused considerable phytotoxicity. Also by foliar application, the concentration of crysophanic acid for effectively control to Polygonum aviculare was much higher than $2,000{\mu}g\;mL^{-1}$. Herbicidal activity of chrysophanic acid to Echinochloa crus-galli, Cypres difformis, Setaria viridis, Digitaria sangguinalis, Bidens tripartita by foliar application was more effective at concentration ranges from 4,000 to $6,000{\mu}g\;mL^{-1}$. These results suggest that chrysophanic acid demanded for higher than $2,000{\mu}g\;mL^{-1}$ to successful weed control in the field condition.

Mineralogical and Physico-chemical Properties of Fine fractions Remained after Crushed Sand Manufacture (국내 화강암류를 이용한 일부 인공쇄석사 제조과정에서 생기는 스러지의 광물.물리화학적 특성)

  • Yoo, Jang-Han;Ahn, Gi-Oh;Jang, Jun-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.355-361
    • /
    • 2006
  • Artificially crushed sands occupy approximately 30 percent of the total consumption in South Korea. The demand for the crushed sands is expected to rise in the future. Most manufacturers use granitic rocks to produce the crushed sands. During the manufacturing process, fine fractions (i.e., sludges or particles smaller than 63 microns) are removed through the process of flocculation. The fine fraction occupies about 15% of the total weight. The sludges are comprised of quartz, feldspars, calcite, and various kinds of clay minerals. Non-clay minerals occupy more than 75 percent of the sluges weight, according to the XRD semi-quantification measurement. Micas, kaolinites, chlorite, vermiculite, and smectites occur as minor constituents. The sludges from Jurassic granites contain more kaolinites and $14{\AA}$-types than those from the Cretaceous ones. The chemical analysis clearly shows the difference between the parent rocks and the sludges in chemical compositions. Much of colored components in the sludges was accumulated as the weathering products. Particle size analysis results show that the sludges can be categorized as silt loam in a sand-silt-clay triangular diagram. This result was for her confirmed by the hydraulic conductivity data. In South Korea, the sludges remained after crushed sand production are classified as an industrial waste because of their impermeability, and which is caused by their high silt and clay fractions.

Artificial Trachea Covered by Ipithelium (상피세포 피복 인공기관의 개발)

  • 김광택;이윤신
    • Journal of Chest Surgery
    • /
    • v.30 no.8
    • /
    • pp.739-746
    • /
    • 1997
  • A variety of experiments concerning the development of ideal prosthetic grafts for correcting circumferential tracheal defects have been performed. The requirements for an ideal tracheal prosthesis are impermeability to air, consistency to prevent collapse, and acceptance by the host tissue causing a minimum inflammatory reaction, allowing fibroblastic infiltration and epithelialization. The synthetic material, polyurethane(PU), is known as a biocompatible polymer with an inert component. In this study, the tracheal prosthesis was made from microporous PU(30 micrometer in diameter) coated with gelatin and reinforced with isoplastic rings. This procedure provides the prosthesis with a compression strength. The out side diame er of the prosthesis was 20 mm with a length of 30 mm. The gelatin used in the study was obtained from pig skin and immobilized and cross-linked by irradiation(60 Co gamma ray) to promote host tissue incorporation and render the prosthesis epithelization after implantation. Animal experiments using 10 mongrel dogs were performed to compare three kinds of prosthesis; gelatin coated polyurethane graft, uncoated polyurethane graft, and prosthesisf pericadium complex graft. After 6 weeks of implantation, the epithelialization of implants was seen on the gelatin-coated and prosthesisfpericadium complex grafts. Implanted prosthesis were complicated by airway obstruction due to anastomosis granuloma. Early tracheal stenosis was found in the uncoated graft group. Two kind of anastomosis techniques were tested on the gelatin-coated prosthesis. Everted anastomosis resulted severe granuloma than the inverted anastomosis. In the prosthesislpericadium complex graft, bacteria and inflammation at a anastomotic site was found. Based on these results, gelatin coated porous polyurethane trachea prosthesis is biocompatible and may be useful in clinical application with further investigation.

  • PDF

A Study on Environmentally Friend Counter Facilities for Improvement of Harbor Water Quality (항내수질 개선을 위한 친환경 외곽시설에 관한 연구)

  • Kim, Kang-Min;Kang, Suk-Hyong;Ryu, Ha-Sang;Kim, Sang-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.27 no.2
    • /
    • pp.233-238
    • /
    • 2003
  • Due to the impermeability of outer wall facilities such as Breakwaters which dissipates the wave energy and keeps harbor tranquility, the enclosed area of harbor becomes partially blocked and the water exchange can be reduced. Recent trends of port development protect water quality and emphasize Water-Front, so the method which enhances the circulation of harbor waters and the dilution of the water pollutants are studied. The best improvement of water quality is a remove of pollutant source on land, but an enclosed port must be enhanced the tidal exchange. For this end, the best improvement may be made a drain-route on the existing outer wall facilities. In this study, the numerical computations were carried out to predict the circulation of harbor waters and the tidal exchange through the drain-rout in the polluted harbor(Samchonpo-guhang) located at the east coast of South Sea. Computational models adopting FDM(Finite Difference Method) were used here and were already verified from the previous studies und ocean survey. As a result of this study, circulation and the tidal exchange at the harbor before and after introduction of drain-route were assessed.

Assessment of Flood Vulnerability to Climate Change Using Fuzzy Model and GIS in Seoul (퍼지모형과 GIS를 활용한 기후변화 홍수취약성 평가 - 서울시 사례를 중심으로 -)

  • Kang, Jung-Eun;Lee, Moung-Jin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.119-136
    • /
    • 2012
  • The goal of this study is to apply the IPCC(Intergovernmental Panel on Climate Change) concept of vulnerability to climate change and verify the use of a combination of vulnerability index and fuzzy logic to flood vulnerability analysis and mapping in Seoul using GIS. In order to achieve this goal, this study identified indicators influencing floods based on literature review. We include indicators of exposure to climate(daily max rainfall, days of 80mm over), sensitivity(slope, geological, average DEM, impermeability layer, topography and drainage), and adaptive capacity(retarding basin and green-infra). Also, this research used fuzzy model for aggregating indicators, and utilized frequency ratio to decide fuzzy membership values. Results show that the number of days of precipitation above 80mm, the distance from river and impervious surface have comparatively strong influence on flood damage. Furthermore, when precipitation is over 269mm, areas with scare flood mitigation capacities, industrial land use, elevation of 16~20m, within 50m distance from rivers are quite vulnerable to floods. Yeongdeungpo-gu, Yongsan-gu, Mapo-gu include comparatively large vulnerable areas. This study improved previous flood vulnerability assessment methodology by adopting fuzzy model. Also, vulnerability map provides meaningful information for decision makers regarding priority areas for implementing flood mitigation policies.

A Study on the Impermeability of Ground using N.D.S and S.M.I methods (N.D.S공법과 S.M.I공법을 이용한 지반차수 방법에 관한 연구)

  • Kim, Ji-Hwan;Kim, Joon-Jeong;Cho, Kook-Hwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.87-92
    • /
    • 2011
  • This paper describes a study on the permeability reduction of the riverbed ground during urban railway tunnel construction. The research is mainly concentrated on the study of the grouting or injection methods among permeability reduction methods which can be adapted in the riverbed ground. The design technology of grouting methods considering the long term hydro-geological behaviour in the riverbed, was suggested. Two injection methods namely, Natural Durable Stabilizer (N.D.S) and Space-Multi Injection Grouting (S.M.I) methods, were introduced as new approach methods which could be adapted to modify the riverbed ground. In order to evaluate the performance of the improved ground by the N.D.S and S.M.I method, a series of pilot tests including the field and laboratory permeability tests, were carried out in the river crossing tunnel construction sites. The results obtained from pilot test program, were also reviewed. The results, the grouting efficiency of the S.M.I method using the non-alkalimeter silica sol is better than that of N.D.S method using cement. In addition, it is anticipated that the current research results are contributed to develop the grouting design technology.

Inspection Method Validation of Grouting Effect on an Agricultural Reservoir Dam (농업용 저수지 제체에서의 그라우팅 주입효과 확인방법의 검증)

  • Kim, Hyeong-Sin;Moon, Seong-Woo;Leem, Kookmook;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.381-393
    • /
    • 2021
  • Physical, mechanical, hydraulic, and geophysical tests were applied to validate methods of inspecting the effectiveness of grouting on an agricultural reservoir dam. Data obtained from series of in situ and laboratory tests considered four stages: before grouting; during grouting; immediately after grouting; and after aging the grouting for 28 days. The results of SPT and triaxial tests, including the unit weight, compressive strength, friction angle, cohesion, and N-value, indicated the extent of ground improvement with respect to grout injection. However, they sometimes contained errors caused by ground heterogeneity. Hydraulic conductivity obtained from in situ variable head permeability testing is most suitable for identifying the effectiveness of grouting because the impermeability of the ground increased immediately after grouting. Electric resistivity surveying is useful for finding a saturated zone and a seepage pathway, and multichannel analysis of surface waves (MASW) is suitable for analyzing the effectiveness of grouting, as elastic velocity increases distinctly after grouting injection. MASW also allows calculation from the P- and S- wave velocities of dynamic properties (e.g., dynamic elastic modulus and dynamic Poisson's ratio), which can be used in the seismic design of dam structures.

Development and application of cellular automata-based urban inundation and water cycle model CAW (셀룰러 오토마타 기반 도시침수 및 물순환 해석 모형 CAW의 개발 및 적용)

  • Lee, Songhee;Choi, Hyeonjin;Woo, Hyuna;Kim, Minyoung;Lee, Eunhyung;Kim, Sanghyun;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.165-179
    • /
    • 2024
  • It is crucial to have a comprehensive understanding of inundation and water cycle in urban areas for mitigating flood risks and sustainable water resources management. In this study, we developed a Cellular Automata-based integrated Water cycle model (CAW). A comparative analysis with physics-based and conventional cellular automata-based models was performed in an urban watershed in Portland, USA, to evaluate the adequacy of spatiotemporal inundation simulation in the context of a high-resolution setup. A high similarity was found in the maximum inundation maps by CAW and Weighted Cellular Automata 2 Dimension (WCA2D) model presumably due to the same diffuse wave assumption, showing an average Root-Mean-Square-Error (RMSE) value of 1.3 cm and high scores of binary pattern indices (HR 0.91, FAR 0.02, CSI 0.90). Furthermore, through multiple simulation experiments estimating the effects of land cover and soil conditions on inundation and infiltration, as the impermeability rate increased by 41%, the infiltration decreased by 54% (4.16 mm/m2) while the maximum inundation depth increased by 10% (2.19 mm/m2). It was expected that high-resolution integrated inundation and water cycle analysis considering various land cover and soil conditions in urban areas would be feasible using CAW.

A Study on the Damages of Head Works by the Storm Flood in the Area of Cheong Ju and Boeun -Emphasis onFactors Influenced on the Disasters and their Countermeasures- (淸州 및 報恩地方의 頭首工洪水災害에 關한 調査硏究(II) -災害原因 및 對策方案을 中心으로-)

  • Nam, Seong-Woo;Kim, Choul-Kee
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.2
    • /
    • pp.49-55
    • /
    • 1982
  • The purpose of this study is to classify the factors influenced on the damages of head works suffered from the storm flood occurred on July 22 1980 in both Musim and Bochong rivers and to find out an integral counter measures against the causes influenced on the disaster of head works in the engineering aspect of planning, design, construction and maintenance. In this survey, number of samples was taken 25 head Works, and the counter measures against the causes of their disasters summarized was as follows, 1. In the aspect of planning a. As the flood water level after the establishment of head works is more increased than the level before setting of head works owing to having more gentle slope of river bed between the head works than nature slope of river bed. Number of head works should be reduced for the appropriate annexation of them b. In the place where head works is established on the curved point of levee, the destruction of levee becomes severe by the strong deflective current. Therefore the setting of head works on the curved point should be kept off as long as possible and in case of unavoidable circumstances the construction method such as reinforced concrete wall or stone wall filed with concrete and anchored bank revetments should be considered. 2. In the aspect of design a. As scoring phenomena at up stream is serious around the weir Where the concentration of strong current is present in such a place, up stream apron having impermeability should be designed to resist and prevent scoring. b. As the length of apron and protected bed is too short to prevent scoring as down stream bed, the design length should be taken somewhat more than the calculated value, but in the case the calculated length becomes too long to be profitable, a device of water cushion should be considered. c. The structure of protected river bed should be improved to make stone mesh bags fixed to apron and to have vinyl mattress laid on river bed together with the improvement for increasing the stability of stone mesh bags and preventing the sucked sand from the river bed. d. As the shortage of cut-off length, especialy in case of the cutoffs conneting both shore sides of river makes the cause of destruction of embankment and weir body, the culculation of cut-off length should be taken enough length based on seepage length. 3. In the aspect of design and constructions a. The overturing destruction of weir by piping action was based on the jet water through cracks at the construction and expansion joints. therefore the expansion joint should be designed and constructed with the insertion of water proof plate and asphalt filling, and the construction joint, with concaved shape structure and steel reinforcement. b. As the wrong design and construction of the weep holes on apron will cause water piping and weir destruction, the design and construction of filter based on the rule of filter should be kept for weep holes. c. The wrong design and construction of bank revetment caused the severe destruction of levee and weir body resulting from scoring and impulse by strong current and formation of water route behind the revetment. Therefore bank revetment should be designod and constructed with stone wall filled with concrete and anchored, or reinforced concrete wall to prevent the formation of water flow route behind the wall and to resist against the scoring and impulse of strong stream. 4. In the aspect of maintenance When the damaged parts occurred at head works the authorities and farmers concerned should find and mend them as soon as possible with mutual cooperation, and on the other hand public citizen should be guided for good use of public property.

  • PDF