• Title/Summary/Keyword: Impedance spectroscopy analysis

Search Result 196, Processing Time 0.022 seconds

Evaluation of Iron Nickel Oxide Nanopowder as Corrosion Inhibitor: Effect of Metallic Cations on Carbon Steel in Aqueous NaCl

  • Chaudhry, A.U.;Mittal, Vikas;Mishra, Brajendra
    • Corrosion Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.13-17
    • /
    • 2016
  • The aim of this study was to evaluate the use of iron-nickel oxide ($Fe_2O_3$.NiO) nanopowder (FeNi) as an anti-corrosion pigment for a different application. The corrosion protection ability and the mechanism involved was determined using aqueous solution of FeNi prepared in a corrosive solution containing 3.5 wt.% NaCl. Anti-corrosion abilities of aqueous solution were determined using electrochemical impedance spectroscopy (EIS) on line pipe steel (API 5L X-80). The protection mechanism involved the adsorption of metallic cations on the steel surface forming a protective film. Analysis of EIS spectra revealed that corrosion inhibition occurred at low concentration, whereas higher concentration of aqueous solution produced induction behavior.

Effect of the Coaling and Annealing on Noncorrosive of Fuel Cell Separator (코팅과 열처리가 연료전지 분리판의 내식성에 미치는 영향)

  • Kim, Gwi-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.11
    • /
    • pp.1000-1003
    • /
    • 2007
  • The molten carbonate fuel cell has conspicuous feature and high potential in being used as an energy converter of various fuel to electricity and heat. However, the molten carbonate fuel cell which use strongly corrosive molten carbonate at $650^{\circ}C$ have many problem. One of the material problems is the severe corrosion of the metallic components, such as the separator. The effect of coating and annealing treatment on the corrosion for SUS 304 and SUS 430 which are the candidate materials for molten carbonate fuel cell hardware has been investigated in molten carbonate at $650^{\circ}C$ by using steady state polarization and electrochemical impedance spectroscopy method. It was found that the corrosion current of these SUS 304 and SUS 430 decreased with coating and annealing treatment.

Physical Methods for the Identification of Irradiated Food

  • Yang, Jae-Seung;Lee, Hae-Jung
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.2
    • /
    • pp.203-209
    • /
    • 1998
  • The development of methods for the identification of irradiated foods helps enforce national and international regulations on labelling to ensure the consumer's free choice to buy irradiated or unirradiated foods. and the availabilityof such methods may assist the promotion of international trade in irradiated food products and help prevent abuse of the technology. A number of approaches to determine the physical , chemical, microbiological and biological changes that occur in foods treated with ionizing radiation have been studied. However no single method is universally applicable. Among physical measurements, the leading methods of indentification are electron spin resonance (ESR) spectroscopy and thermoluminescence(TL). ESR is an established non-destructive method for the analysis of free radicals from their traps and TL is the emission of light from irradiated mineral extracts by heating. Viscosity of carbohydrate polymers by causing chain breaks by irradiation, measuring the impedance of potatoes and detection of gases produced radiolytically are promising techniques for identification purposes. Irradiated water-containing foods show significant supercooling when monitored with a differential scanning calorimeter (DSC), which can be applied to identifying irradiated ones.

  • PDF

Performance of Al-Zn Coating by Arc Thermal and Plasma arc Thermal Spray Processes in 3.5% NaCl Solution (3.5% NaCl에서 Arc Thermal and Plasma Arc Spray 공법이 적용된 Al- Zn 코팅 강재의 내 식 성능 평가에 관한 연구)

  • Jannat, Adnin Raihana;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.17-18
    • /
    • 2021
  • In the present study, Al-Zn coating was deposited by Arc thermal (AT) and plasma arc thermal (PAT) spray processes, and their corrosion characteristics were studied in 3.5% NaCl through electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM) and mechanical tests. The bond adhesion result showed that plasma arc sprayed coating had a higher value attributed to compact, dense, and less porous coating compared to arc thermal spray coating which contains defects/pores and uneven morphology as revealed by scanning electron microscope analysis. Electrochemical results revealed that the plasma arc sprayed coating had a high polarization resistance at early stage of immersion, suggesting its excellent corrosion protection performance.

  • PDF

A Study on the Detection Characteristics in Glucose and Fabrication of Bi-Enzyme Electrode using Electrochemical Method (전기화학적 방법을 이용한 다중 효소 전극 제작 및 글루코스 검출 특성에 관한 연구)

  • Han, Kyoung Ho;Shin, In Seong;Yoon, Do-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.3
    • /
    • pp.66-72
    • /
    • 2020
  • In this study, the development of biosensors capable of bi-enzyme reactions by including Horseradish peroxidase and glucose oxidase was carried out for detection of glucose. The sensors were manufactured using electro deposition method to reduce production time, and screen printed electrodes (SPE) were used to produce economical sensors. To check the bienzyme effect, the sensor was compared and analyzed with single enzyme biosensor. The characteristics of the sensor were evaluated using scanning electron microscopy(SEM), cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS), chronoamperometry(CA), and flow injection analysis(FIA). Analysis results from SEM, CV and EIS confirmed that the enzymes are well fixed to the electrode surface. In addition, it was confirmed that bi-enzyme biosensors manufactured from the CA method improved signal performance by 200% compared to single enzyme biosensors. From this results, we were able to explain that HRP and GOD react catalyzed to each other. And the results of FIA showed that the intensity of each current signal was constant when the same concentration of glucose was injected four times. In addition, by analyzing the intensity of current signals for glucose concentrations, the biosensors manufactured in this study showed excellent trends in signal sensitivity, reproducibility and stability.

Improvement of Early Strength of Blast-Furnace Slag Blended Cement at Low Temperature (고로 슬래그 시멘트의 저온 조기 강도 증진)

  • 장복기;임용무;김윤주
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.130-135
    • /
    • 1999
  • The enhanced slag fineness and the batch water of low water-to-cement ratio(W/C) were employed in order to improve the early strength of blast-furnace slag blended cement at low temperature. A grinding aid was used to grind the blast-furnace slag into the fineness of 6,280$\textrm{cm}^2$/g (Blaine), and this fine slag was then homogeneously mixed with the ordinary Portland cement to produce the blast-furnace slag blended cement containing 40% slag by weight composition. On the other hand, the batch water could be reduced from W/C=0.50 (KS L 5105) to W/C=0.33 through a commercial, naphthalene type superplasticizer. Through the method mentioned above, the early strength of the blast-furnace slag blended cement at low temperature could be enhanced even somewhat higher than the Portland cement strength. And the microsturcture of the cement was studied by both the pore structure analysis and the A.C. impedance measurement.

  • PDF

Thermal Stability of Surface Film Formed on a Graphite Negative Electrode in Lithium Secondary Batteries (리튬 이차전지의 흑연 음극에 형성된 표면피막의 열적 안정성)

  • Jeong, Soon-Ki;Lee, Ha-Na;Kim, Yang-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.3
    • /
    • pp.157-162
    • /
    • 2011
  • The stability at elevated temperatures of a surface film formed on a graphite electrode in lithium secondary batteries was investigated by transmission electron microscopy (TEM) and electrochemical AC impedance spectroscopy (EIS). TEM analysis revealed that the surface film partly dissolved in the electrolyte solution during storage at $60^{\circ}C$, resulting in a decrease in the thickness of the surface film and a change in its morphology to a porous structure. On the other hand, an increase in the impedance of the surface film which is attributable to a change in composition of the surface film was confirmed by EIS analysis during the storage at $60^{\circ}C$. It was also shown that the addition of vinylene carbonate or 1,3-propane sultone or etylene sulfite, even if limited, improves the stability of the surface film at elevated temperatures.

Synthesis and Electrochemical Properties of Porous Li4Ti5O12 Anode Materials (기공구조로 제조된 Li4Ti5O12 음극활물질의 전기화학적 특성)

  • Seo, Jin-Seong;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.861-867
    • /
    • 2019
  • $Li_4Ti_5O_{12}$ is a promising next-generation anode material for lithium-ion batteries due to excellent cycle life, low irreversible capacity, and little volume expansion during charge-discharge process. However, it has poor charge capacity at high current density due to its low electrical conductivity. To improve this weakness, porous $Li_4Ti_5O_{12}$ was synthesized by sol-gel method with P123 as chelating agent. The physical characteristics of as-prepared sample was investigated by XRD, SEM, and BET analysis, and electrochemical properties were characterized by cycle performance test, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS). $Li_4Ti_5O_{12}$ synthesized by 0.01mol ratio of P123/Ti showed most unified particle size, high specific surface area, and relatively high porosity. EIS analysis showed that depressed semicircle size was remarkably reduced, which suggested resistance value in electrode was decreased. Capacity in rate performance showed 178 mAh/g at 0.2C, 170 mAh/g at 0.5C, 110 mA/h at 5C, and 90 mAh/g at 10C. Capacity retention also showed 99% after rate performance.

Characterization of PEMFC Electrode Structures by Complex Capacitance Analysis of EIS (임피던스 복소캐패시턴스법에 의한 PEMFC 전극 구조 분석)

  • Jang, Jong-Hyun;Son, Ji-Hwan;Kim, Hyoung-Juhn;Han, Jong-Hee;Lim, Tae-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.213-216
    • /
    • 2007
  • PEMFC의 전기화학적 반응은 촉매, 이오노머, 기공이 만나는 삼상계면에서만 일어나므로, 전극 구조의 최적화가 성능 향상 및 장기안정성 확보에 있어 매우 중요하다. 본 연구에서는 전극 미세구조를 실시간으로 분석하기 위해 임피던스 복소캐패시턴스법을 도입하고자 하였다. 즉, PEMFC의 양극에 질소를 공급하면 0.4 V 부근에서 전기이중층 형성 반응만이 일어나는 것을 확인하였으며, 이때 음극에는 수소를 공급하여 기준전극 및 반대전극으로 사용하였다. 측정된 임피던스를 복소캐패시턴스로 변환하고 허수부를 주파수에 대해 도시하면 피크 형태의 곡선이 얻어지는데, (1) 피크 면적은 전극/전해질의 계면면적, (2) 피크 위치는 이오노머 네트워크에 의한 수소이온 전도 특성, (3) 피크 폭은 다공성 구조의 균일도를 각각 나타내므로, 피팅 없이 직접적인 해석이 가능하다는 장점을 가진다. 반면, 기존의 Nyquist 도시법은 피팅에 의한 분석이 필요하며, 전극층의 불균일한 구조로 인해 단순한 등가회로 구성이 어려운 문제점을 가진다. 최종적으로, MEA 제작 조건 및 운전 조건을 변수로 하여 임피던스를 측정하고 복소캐패시턴스 분석을 수행하여, 퇴화 경로를 규명하고 운전 조건을 최적화하고자 하였다.

  • PDF

Improvement of Efficiency in Dye-Sensitized Solar Cells with Addition of TBA to the TiO2 Paste and Its Electrochemical Analysis (이산화티타튬 페이스트에 TBA 첨가에 따른 염료감응 태양전지의 효율향상 및 전기화학적 분석)

  • Lee, Minoh;Jung, Cho-long;Choi, Woo-yeol;Jo, Yimhyun
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.124-129
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs) are considered as promising alternatives to conventional photovoltaic device. However, commercialization of the DSSCs is restricted due to the low efficiency. In this paper, highly efficiency DSSCs were fabricated by the adding the TBA to the $TiO_2$ paste. $TiO_2$ photoanode added 0.2 M TBA in DSSCs are shown the best efficiency of 9.14 %. This result ascribed to improvement of the connection between the $TiO_2$ nanoparticles by the addition of the optimized amount TBA. The morphology of the photoanode was observed by FE-SEM. Further investigation about the kinetics of the electrochemical processes are performed by the EIS analysis. Longest diffusion length was obtained in case adding 0.2 M of TBA to $TiO_2$ paste, which was matched well with the improved efficiency.