• 제목/요약/키워드: Impedance angle

검색결과 184건 처리시간 0.025초

과도안전도 평가를 위한 개선된 상정고장 선택 및 여과 알고리즘 개발 (Development of Enhanced Contingency Screening and Selection Algorithm for On-line Transient Security Assessment)

  • 김용학;송성근;남해곤
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권6호
    • /
    • pp.306-314
    • /
    • 2005
  • In this paper, a new approach that is based on EEAC & only with network solutions for CS&S in the transient stability assessment is developed. The proposed CS&S algorithm in conjunction with EEAC to include the capability of performing on-line TSA without TDS is used to calculate the critical clearing time for stability index. In this algorithm, all generators are represented by classical models and all loads are represented by constant impedance load models. The accelerating & synchronizing power coefficient as an index is determined at its disturbance through solving network equation directly. As mentioned above, a new index for generator is generally used to determine the critical generators group. The generator rotor angle is fixed for non-critical generators group, but has equal angle increments for critical generators group. Finally, the critical clearing time is calculated from the power-angle relationship of equivalent OMIB system. The proposed CS&S algorithm currently being implemented is applied to the KEPCO system. The CS&S result was remarkably similar to TSAT program and SIME. Therefore, it was found to be suitable for a fast & highly efficient CS&S algorithm in TSA. The time of CS&S for the 139 contingencies using proposed CS&S algorithm takes less than 3 seconds on Pentium 4, 3GHz Desktop.

빔경사 직렬 급전형 마이크로스트립 배열 안테나 설계 (Design of the Beam Tilted Series-fed Microstrip Array Antenna)

  • 이진선;정민길;김진생;이정남;강치운;이우수;이문수
    • 한국전자파학회논문지
    • /
    • 제8권1호
    • /
    • pp.35-41
    • /
    • 1997
  • 빔폭 $10^{\circ}$, 경사각 $80^{\circ}$ 및 SLL -15 dB 이하인 직렬 급전형 마이크로스트립 배열 안테나를 설계한다. 직렬 급전형 배열은 모든 소자들을 고임피딘스인 전송선로로 상호 연결하고, 첫 번째 소자에서 급전하며, 정합부하로 종단된 진행파 안테나이다. 안테나의 방사패턴과 임피던스 정합은 인쇄된 안테나 및 배열을 설계하는데 널리 사용 되는 소프트웨어 패키지인 앙상블 4.0에 의해서 해석한다. 빔의 경사각은 소자간의 간격에 의해서 구현된다. 직렬 급전형 배열 안테나는 병렬급전구조에 비하여 급전회로망이 간단하고 급전회로망에서의 방사손실이 작은 이점이 있다. 안테나는 두께 62 mil인 RT/Duroid 기판상에 제작한다. 실험결과 이론치와 실험치가 일치함을 확인하였다.

  • PDF

High Work Function of AZO Fhin Films as Insertion Layer between TCO and p-layer and Its Application of Solar Cells

  • Kang, Junyoung;Park, Hyeongsik;Yi, Junsin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.426.1-426.1
    • /
    • 2016
  • We report high work function Aluminum doped zinc oxide (AZO) films as insertion layer as a function of O2 flow rate between transparent conducting oxides (TCO) and hydrogenated amorphous silicon oxide (a-SiOx:H) layer to improve open circuit voltage (Voc) and fill factor (FF) for high efficiency thin film solar cell. However, amorphous silicon (a-Si:H) solar cells exhibit poor fill factors due to a Schottky barrier like impedance at the interface between a-SiOx:H windows and TCO. The impedance is caused by an increasing mismatch between the work function of TCO and that of p-type a-SiOx:H. In this study, we report on the silicon thin film solar cell by using as insertion layer of O2 reactive AZO films between TCO and p-type a-SiOx:H. Significant efficiency enhancement was demonstrated by using high work-function layers (4.95 eV at O2=2 sccm) for engineering the work function at the key interfaces to raise FF as well as Voc. Therefore, we can be obtained the conversion efficiency of 7 % at 13mA/cm2 of the current density (Jsc) and 63.35 % of FF.

  • PDF

Effects of surface modification with hydroxyl terminated polydimethylsiloxane on the corrosion protection of polyurethane coating

  • Jeon, Jae Hong;Shon, MinYoung
    • Corrosion Science and Technology
    • /
    • 제13권5호
    • /
    • pp.170-177
    • /
    • 2014
  • Polyurethane coating was designed to give a hydrophobic property on its surface by modifying it with hydroxyl terminated polydimethylsiloxane and then effects of surface hydrophobic tendency, water transport behavior and hence corrosion protectiveness of the modified polyurethane coating were examined using FT-IR/ATR spectroscopy, contact angle measurement and electrochemical impedance test. As results, the surface of polyurethane coating was changed from hydrophilic to hydrophobic property due primarily to a phase separation tendency between polyurethane and modifier by the modification. The phase separation tendency is more appreciable when modified by polydimethylsiloxane with higher content. Water transport behavior of the modified polyurethane coating decreased more in that with higher hydrophobic surface property. The decrease in the impedance modulus ${\mid}Z{\mid}$ at low frequency region in immersion test for polyurethane coatings was associated with the water transport behavior and surface hydrophobic properties of modified polyurethane coatings. The corrosion protectiveness of the modified polyurethane coated carbon steel generally increased with an increase in the modifier content, confirming that corrosion protectiveness of the modified polyurethane coating is well agreed with its water transport behavior.

집중질량 모형화에 의한 점탄성재료의 복소 탄성계수 산출을 위한 시편 크기 의 절정 (Determination of Specimen Geomery for Estimation of the Complex Modulus of Viscoelas the Materials by the Lumped Mass Model)

  • 강기호;심송;김광준
    • 소음진동
    • /
    • 제1권2호
    • /
    • pp.121-128
    • /
    • 1991
  • In order to use viscoelastic materials efficiently for noise and vibration control, or th qualify newly developed materials, knowledge of the Young' s modulus and loss factor is essemtial. These material properties, the so-called complex Young' s modulus, are frequently treated as dynamic charicteristics because of their dependence upon the frequency. Many techniques have been developed and verified for measuring complex Young' s modulus of viscoelastic materials. Among them, the impedance method is preferable in order to obtain the frequency information in detail. In this method, a cylindrical or prismatic specimen is excited into longitudinal harmonic vibration at one end, the other being fixed, and the resulting force is measured at the driving or fixed end. The amplitude ratio of the two signals and phase angle between them are then used to compute the material properties using various mathematical models. In this paper, the impedance method is investigated theoretically and experimentally. A way to determine the specimen geometry which is most appropriate for the identification of complex Young' s modulus using the lumped mass model is presented and discussed. Then experimental results supporting the theoretical predictions are presented.

  • PDF

충돌 벡터를 이용한 이동로봇의 동적 장애물 회피 (Dynamic Obstacle Avoidance of a Mobile Robot Using a Collision Vector)

  • 서대근;류은태;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제13권7호
    • /
    • pp.631-636
    • /
    • 2007
  • An efficient obstacle avoidance algorithm is proposed in this paper to avoid dynamic obstacles using a collision vector while a tele-operated mobile robot is moving. For the verification of the algorithm, an operator watches through a monitor and controls the mobile robot with a force-reflection joystick. The force-reflection joystick transmits a virtual force to the operator through the Inter-net, which is generated by an adaptive impedance algorithm. To keep the mobile robot safe from collisions in an uncertain environment, the adaptive impedance algorithm generates the virtual force which changes the command of the operator by pushing the operator's hand to a direction to avoid the obstacle. In the conventional virtual force algorithm, the avoidance of moving obstacles was not solved since the operator cannot recognize the environment realistically by the limited communication bandwidth and the narrow view-angle of the camera. To achieve the dynamic obstacle avoidance, the adaptive virtual force algorithm is proposed based on the collision vector that is a normal vector from the obstacle to the mobile robot. To verify the effectiveness of the proposed algorithm, mobile robot navigation experiments with multiple moving obstacles have been performed, and the results are demonstrated.

전압의 주파수 편의를 이용한 동기탈조 검출 알고리즘에 관한 연구 (A Study on the Out-of-Step Detection Algorithm using Frequency Deviation of the Voltage)

  • 소광훈;허정용;김철환
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권3호
    • /
    • pp.175-181
    • /
    • 2004
  • The protection against transient instability and consequent out-of-step condition is a major concern for the utility industry. Unstable system may cause serious damage to system elements such as generators and transmission lines. Therefore, out-of-step detection is essential to operate a system safely. The detection of out-of-step is generally based upon the rate of movement of the apparent impedance. However such relay monitors only the apparent impedance which may not be sufficient to correctly detect all forms of out-of-step and cannot cope with out-of-step for a more complex type of instability such as very fast power swing. This paper presents the out-of-step detection algorithm using voltage frequency deviation. The digital filters based on discrete Fourier transforms (DFT) to calculate the frequency of a sinusoid voltage are used, and the generator angle is estimated using the deviation of the calculated frequency component of the voltage. The proposed out-of-step algorithm is based on the assessment of a transient stability using equal area criterion. The proposed out-of-step algorithm is verified and tested by using EMTP MODELS.

50kW 계통연계형 디젤발전기의 모델링 및 실험 (Modeling and Experiment of 50kW Diesel Generator in Grid-connected Mode)

  • 이우종;이학주;차한주
    • 전기학회논문지
    • /
    • 제63권10호
    • /
    • pp.1347-1353
    • /
    • 2014
  • This paper researches a modeling and experiment of 50kW diesel generator in grid-connected mode. The output of diesel generator can be calculated by the phase difference between voltage and current as well as the diesel generator parameter such as mutual impedance, field current and rotor angle. Considering the different d-q frame impedance, the output of diesel generator is analyzed for equation and verified by simulation. The diesel generator modeled by considering the time delay for actuator, diesel engine and exciter. The controller of diesel generator is divided into governor and exciter. The governor consists of speed controller and active power controller, where speed controller maintains frequency as 60Hz and active power tracks active power reference. On the other hand, the exciter consists of voltage controller and reactive power controller, where voltage controller controls $380V_{LL}$ and reactive power is controlled as zero. When the active power reference is changed as 0.1pu in the grid connected mode, the active power takes 10 seconds to reach the steady state and the reactive power is maintains as zero. The 50kW diesel generator is tested and experiment results are well matched with the simulation results.

Corrosion Behavior of High Pressure Die Cast Al-Ni and Al-Ni-Ca Alloys in 3.5% NaCl Solution

  • Arthanari, Srinivasan;Jang, Jae Cheol;Shin, Kwang Seon
    • Corrosion Science and Technology
    • /
    • 제16권3호
    • /
    • pp.100-108
    • /
    • 2017
  • In this investigation corrosion behavior of newly developed high-pressure die cast Al-Ni (N15) and Al-Ni-Ca (NX1503) alloys was studied in 3.5% NaCl solution. The electrochemical corrosion behavior was evaluated using open circuit potential (OCP) measurement, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques. Potentiodynamic polarization results validated that NX1503 alloy exhibited lower corrosion current density ($i_{corr}$) value ($5.969{\mu}A/cm^2$) compared to N15 ($7.387{\mu}A/cm^2$). EIS-Bode plots revealed a higher impedance (${\mid}Z{\mid}$) value and maximum phase angle value for NX1503 than N15 alloy. Equivalent circuit curve fitting analysis revealed that surface layer ($R_1$) and charge transfer resistance ($R_{ct}$) values of NX1503 alloy was higher compared to N15 alloy. Immersion corrosion studies were also conducted for alloys using fishing line specimen arrangement to simultaneously measure corrosion rates from weight loss ($P_W$) and hydrogen volume ($P_H$) after 72 hours and NX1503 alloy had lower corrosion rate compared to N15 alloy. The addition of Ca to N15 alloy significantly reduced the Al3Ni intermetallic phase and further grain refinement may be attributed for reduction in the corrosion rate.

Volatile Organic Compound Specific Detection by Electrochemical Signals Using a Cell-Based Sensor

  • Chung, Sang-Gwi;Kim, Jo-Chun;Park, Chong-Ho;Ahn, Woong-Shick;Kim, Yong-Wan;Choi, Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.145-152
    • /
    • 2008
  • A cell-based in vitro exposure system was developed to determine whether oxidative stress plays a role in the cytotoxic effects of volatile organic compounds (VOCs) such as benzene, toluene, xylene, and chlorobenzene, using human epithelial HeLa cells. Thin films based on cysteine-terminated synthetic oligopeptides were fabricated for immobilization of the HeLa cells on a gold (Au) substrate. In addition, an immobilized cell-based sensor was applied to the electrochemical detection of the VOCs. Layer formation and immobilization of the cells were investigated with surface plasmon resonance (SPR), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The adhered living cells were exposed to VOCs; this caused a change in the SPR angle and the VOC-specific electrochemical signal. In addition, VOC toxicity was found to correlate with the degree of nitric oxide (NO) generation and EIS. The primary reason for the marked increase in impedance was the change of aqueous electrolyte composition as a result of cell responses. The p53 and NF-${\kappa}B $ downregulation were closely related to the magnitude of growth inhibition associated with increasing concentrations of each VOC. Therefore, the proposed cell immobilization method, using a self-assembly technique and VOC-specific electrochemical signals, can be applied to construct a cell microarray for onsite VOC monitoring.