• 제목/요약/키워드: Impedance Signal

검색결과 523건 처리시간 0.026초

2 Drop 구조를 가지는 Differential Pair의 Impedance 해석 및 설계 방안 (Optimized Design Technique of a Differential Pair Having 2 Drop Configuration through Impedance Analysis)

  • 배민지;김윤정;최웅;양국보;김영수
    • 한국전자파학회논문지
    • /
    • 제20권2호
    • /
    • pp.193-199
    • /
    • 2009
  • 본 논문에서는 microstrip line 구조를 가지는 differential pair의 2 drop 구조에 대한 임피던스 해석을 reflection theory를 바탕으로 분석하였다. 또한 시뮬레이션을 통한 transient 해석을 통해 임피던스 해석의 타당성을 검증하였다. 위와 같은 해석 과정을 통하여 다양한 drop 구조의 신호 전달 특성을 이해할 수 있다. 임피던스 해석을 바탕으로 2 drop 구조 해석을 통하여 최적의 signal integrity를 가지는 설계 기법을 제안하였고, circuit 시뮬레이션 해석(Ansoft designer)을 통해 signal integrity 효과를 검증하였다.

자기 임피던스 센서를 이용한 맥박 측정 장치 (A monitoring apparatus for pulse shape of human heartbeats by magnetic impedance sensors)

  • 김청월;구본주;김종성
    • 센서학회지
    • /
    • 제15권2호
    • /
    • pp.77-83
    • /
    • 2006
  • A monitoring apparatus for pulse shapes of human heartbeats has been developed using an amorphous MI(Magnetic Impedance) sensor. The pulse shapes are successfully obtained from voltage signals due to the variations of magnetic impedance in the amorphous MI sensor, which is attached to a patient's wrist. This voltage signal was fed into a signal processing module to extract the pulse shapes of heartbeats. The signal processing module, which is proposed to detect a weak variations of impedance in MI sensor under a noisy measurement environment, consists of a high frequency current source, an amplifier stage and a synchronous detection circuit. To evaluate the characteristics of a newly developed apparatus, various experiments were performed. The experimental results show that the developed apparatus could be used as a diagnosis tool for traditional Korean medicine with further systematic clinical studies.

Development of an Impedance Matching Layer in an Ultrasound Transducer with Gradient Properties

  • Jeong, Jihoon
    • 센서학회지
    • /
    • 제27권6호
    • /
    • pp.374-379
    • /
    • 2018
  • The piezocomposite transducer is widely used because it is highly efficient in transforming electric energy into mechanical energy, and its frequency range is broader than that of other types of ultrasound transducers. A general piezocomposite transducer is composed of an acoustic lens, impedance matching layers, piezoelectric materials, and backing layers. When an input voltage is applied to a piezoelectric material as an active material, it generates sound waves while vibrating. At that time, an impedance matching layer helps the sound waves to propagate forward while reducing the impedance mismatch that may occur at the interface between the active material and its front material. The impedance mismatch has a negative effect on the signal of an ultrasound transducer; thus, it is important to design a matching layer to overcome the issue. In this study, an optimized feature of a matching layer with gradient properties is studied. An objective function is defined to minimize both the average and the deviation of the reflection coefficients that are functions of the frequencies. As a result, an improvement in the signal characteristics with respect to the sensitivity and bandwidth is reported.

임피던스법을 이용한 혈류량 변화 측정 (Measurement of Blood Flow Variation using Impedance Method)

  • 정도운;강성철;전계록
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2006년도 춘계종합학술대회
    • /
    • pp.693-696
    • /
    • 2006
  • 본 연구에서는 생체 임피던스의 변화를 계측하여 혈류량의 변화를 추정하기 위한 시스템을 구현하였다. 구현된 시스템은 인위적인 압력을 가하여 압력의 변화에 따른 임피던스의 변화량을 측정할 수 있도록 구성하였으며, 크게 압력 측정부와 4 전극법을 이용한 임피던스 측정부로 구분할 수 있다. 압력 측정부는 반도체식 압력센서와 센서의 출력신호를 처리하기 위한 전자회로부로 구성하였고, 임피던스 측정부는 교류 정전류원 회로와 임피던스 신호의 검출을 위한 락인 증폭기로 시스템을 구성하였다. 구현된 시스템의 성능평가를 위하여 표준저항을 이용한 임피던스 측정부의 특성조사 실험을 수행 하였다. 그리고 실제 실험군을 대상으로 임피던스의 계측을 통한 혈류량 변화 추정실험을 수행하였고, 혈류량 변화와 평균 동맥압을 이용한 혈류 저항비를 추정하였다 그 결과 혈류저항비와 혈류량의 변화는 반비례관계를 명확하게 보여 주었으며, 상관분석을 수행한 결과 상관계수가 -0.96776으로 강한 음의 상관관계를 나타내었다.

  • PDF

마이크로프로세서를 이용한 AOC 방식에서 EOG 앰프 성능 개선 (Improvement of the performance of EOC Amp in AOC method using microprocessor)

  • 고석남;이상세;정호춘;임승관;이영석;진달복;박병림
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(5)
    • /
    • pp.218-221
    • /
    • 2000
  • The electronystagmography(ENG) means to measure and record CRP(Corneal-Retinal Potential) whenever the eyeball is moved by using a skin electrode stuck to the hi-temporal and the difference of CRP. Both the horizontal and vertical movement are known according to the position of the stuck skin electrode. In this paper, the variable time-constances to record the eyeball signal of the conventional EOG(Electro-Oculograph) Amplifier is chosen. The shorter the time-constance is, the worse the distortion of a signal is. But the unbalanced impedance of the electrode stuck on the hi-temporal is reduced. Also, the longer the time-constance is, the less the distortion of it signal is. But it is sensitive to the change of base line according to the unbalanced impedance. In order to solve these problems, an DC-Amplifier, the distortion of the eyeball signal is globally used. By solving unbalanced impedance problem of EOG amplifier, the distortion ratio of EOG amplifier is improved.

  • PDF

Autonomous hardware development for impedance-based structural health monitoring

  • Grisso, Benjamin L.;Inman, Daniel J.
    • Smart Structures and Systems
    • /
    • 제4권3호
    • /
    • pp.305-318
    • /
    • 2008
  • The development of a digital signal processor based prototype is described in relation to continuing efforts for realizing a fully self-contained active sensor system utilizing impedance-based structural health monitoring. The impedance method utilizes a piezoelectric material bonded to the structure under observation to act as both an actuator and sensor. By monitoring the electrical impedance of the piezoelectric material, insights into the health of the structured can be inferred. The active sensing system detailed in this paper interrogates a structure utilizing a self-sensing actuator and a low cost impedance method. Here, all the data processing, storage, and analysis is performed at the sensor location. A wireless transmitter is used to communicate the current status of the structure. With this new low cost, field deployable impedance analyzer, reliance on traditional expensive, bulky, and power consuming impedance analyzers is no longer necessary. A complete power analysis of the prototype is performed to determine the validity of power harvesting being utilized for self-containment of the hardware. Experimental validation of the prototype on a representative structure is also performed and compared to traditional methods of damage detection.

경락 임피던스 측정 시스템 개발에 관한 연구 (Study on the Development of Meridian Impedance Measurement System)

  • 이우철;인창식;민경기
    • 전기학회논문지
    • /
    • 제58권2호
    • /
    • pp.422-429
    • /
    • 2009
  • Meridian which used as the basic theory of acupuncture treatment, is an important functional connection system of acupuncture point in oriental medicine. Yangdorak and EAV have lack of precision because of using 2-electrode method, occurring high non-uniformed current density and electrode contact status on electrode placement spot. Therefore we implemented a meridian impedance measurement system for measuring meridian impedance using 4-electrode method. In order to confirm the precision of developed system, we made an constant current characteristic experiment using standard resistor. As a results of clinical study with 18 subjects, the meridian impedance showed that reproductivity and repeatability of HT7 acupuncture point are $0.515[k{\Omega}]{\pm}0.000$(mean${\pm}$standard deviation) and $0.515[k{\Omega}]{\pm}0.002$, respectively. And reproductivity and repeatability of PC7 are $0.521[k{\Omega}]{\pm}0.000$ and $0.521[{\Omega}]{\pm}0.001$ respectively. The proposed system was stable and reliable. Therefore this study proved AC impedance method to valid in measuring meridian impedance, and also verified precision and repeatability of the proposed meridian impedance measurement system. The proposed system will serve as more effective method of measuring meridian phenomena as a bioelectric signal in clinical practice.

Modified Principal Component Analysis for In-situ Endpoint Detection of Dielectric Layers Etching Using Plasma Impedance Monitoring and Self Plasma Optical Emission Spectroscopy

  • Jang, Hae-Gyu;Choi, Sang-Hyuk;Chae, Hee-Yeop
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.182-182
    • /
    • 2012
  • Plasma etching is used in various semiconductor processing steps. In plasma etcher, optical- emission spectroscopy (OES) is widely used for in-situ endpoint detection. However, the sensitivity of OES is decreased if polymer is deposited on viewport or the proportion of exposed area on the wafer is too small. Because of these problems, the object is to investigate the suitability of using plasma impedance monitoring (PIM) and self plasma optical emission spectrocopy (SPOES) with statistical approach for in-situ endpoint detection. The endpoint was determined by impedance signal variation from I-V monitor (VI probe) and optical emission signal from SPOES. However, the signal variation at the endpoint is too weak to determine endpoint when $SiO_2$ and SiNx layers are etched by fluorocarbon on inductive coupled plasma (ICP) etcher, if the proportion of $SiO_2$ and SiNx area on Si wafer are small. Therefore, modified principal component analysis (mPCA) is applied to them for increasing sensitivity. For verifying this method, detected endpoint from impedance monitoring is compared with optical emission spectroscopy.

  • PDF

커프 압력 조절에 따른 혈류량 변화 평가를 위한 임피던스법의 구현 (Implementation of Impedance Method to Estimate Blood Flow Variation with Cuff Pressure Change)

  • 정도운;배진우;손정만;예수영;최병철;남기곤;김철한;전계록
    • 센서학회지
    • /
    • 제13권6호
    • /
    • pp.462-472
    • /
    • 2004
  • In this study, we measured the blood flow on arm by non-invasive method and implemented a system to measure variation of the blood flow by estimating bio-electrical impedance and arterial pressure according to cuff pressure. The implemented system measured impedance variation according to pressure variation applied by artificial cuff pressure on the measuring position. The system consisted of pressure measuring part and impedance measuring part using 4-electrode method. Pressure measuring part was composed of semiconductor pressure sensor and electronic circuit for signal processing of sensor output signal. In addition, impedance measuring part was composed of constant current source circuit and lock-in amplifier for detecting impedance signal. We conducted experiments of impedance measuring part using standard resistance for performance evaluation of the implemented system. In addition we experimented to estimate variation of the blood flow by measuring impedances of the experimental group. We estimated ratio of the blood flow resistance using mean arterial pressure and variation of the blood flow. As a result the ratio of the blood flow resistance and variation of blood flow were in an inverse relationship with each other and the correlation coefficient was -0.96776.

뇌파신호 측정을 위한 고정밀 전치 증폭기의 설계 (The Design of High Precision Pre-amplifier for EEG Signal Measurement)

  • 유선국;김남현
    • 대한의용생체공학회:의공학회지
    • /
    • 제16권3호
    • /
    • pp.301-308
    • /
    • 1995
  • A high-precision pre-amplifier is designed for general use in EEG measurement system. It consists of signal generator, signal amplifier with a impedance converter, shield driver, body driver, differential amplifier, and isolation amplifier. The combination of minimum use of inaccurate passive components and the appropriate matching of each monolithic amplifiers results in good noise behavior, low leakage current, high CMRR, high input impedance, and high IMRR. The performance of EEG pre-amplifier has been verified by showing the typical EEG pattevn of a nomad person through the clinical experiments.

  • PDF