• Title/Summary/Keyword: Impedance Bandwidth

Search Result 633, Processing Time 0.031 seconds

Bandwidth Enhancement for a Proximity Coupled Microstrip patch Antenna with an Impedance Matching Network (임피던스 정합기를 이용한 근접 결합 급전 패치 안테나의 대역폭 확장)

  • Kwak, Eun-Hyuk;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.55-69
    • /
    • 2015
  • Bandwidth enhancement technique for a proximity coupled patch antenna is investigated. The bandwidth and radiation characteristics of a proximity coupled patch antenna with an integrated impedance matching network printed on substrates with various dielectric constants and thicknesses are compared to those of a proximity coupled patch antenna without an impedance matching network. The bandwidth of a proximity coupled patch antenna with an integrated impedance matching network is greatly increased than that of a proximity coupled patch antenna without an impedance matching network without the degradation of radiation characteristics.

Bandwidth Enhancement of an Aperture Coupled Microstrip Patch Antenna Using a Shunt Stub (병렬 스터브를 이용한 개구면 결합 마이크로스트립 패치 안테나의 대역폭 확장)

  • Koo, Hwan-Mo;Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.2
    • /
    • pp.39-49
    • /
    • 2012
  • An impedance bandwidth enhancement method of an aperture coupled microstrip patch antenna (ACMPA) using a shunt stub is investigated. The conventional ACMPA with a H-shaped coupling aperture is designed and the electrical parameters for the equivalent circuit of the designed conventional ACMPA are extracted. A method for the enhancement of the impedance bandwidth of the ACMPA using a tuning stub connected in shunt with the feed line is presented. The -10 dB return loss impedance bandwidth of the ACMPA with a shunt stub is increased up to about 14 %. The maximum impedance bandwidth of the corresponding ACMPA without a shunt stub is 5.4 %. The increase of the impedance bandwidth of the ACMPA with a shunt stub compared to that of the corresponding ACMPA without a shunt stub is about 160 %.

Inductive Loaded Microstrip Patch Antenna Using Aperture Coupled Fed (개구면 결합 급전을 이용한 Inductive Loaded 마이크로스트립 패치 안테나)

  • Koo, Hwan-Mo;Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.35-42
    • /
    • 2012
  • An inductive loaded microstrip patch antenna using aperture coupled feeding is designed and an impedance bandwidth enhancement method using a shunt stub is investigated. The -10 dB impedance bandwidth of the AIMPA with a shunt stub is increased up to about 5.51 %. The impedance bandwidth of the corresponding AIMPA without a shunt stub is 2.4 %. The increase of the impedance bandwidth of the AIMPA with a shunt stub is about 129.6 % compared to that of the corresponding AIMPA without a shunt stub.

Bandwidth Enhancement of Circularly Polarized Dielectric Resonator Antenna

  • Sun, Ru-Ying
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.26-31
    • /
    • 2015
  • Axial-ratio (AR) bandwidth enhancement is achieved for a circularly polarized (CP) cylindrical dielectric resonator antenna (DRA) using a wideband hybrid coupler (WHC) combined with dual probe feed. The presented WHC, comprised of a Wilkinson power divider and a wideband $90^{\circ}$ shifter, delivers good characteristics in terms of 3 dB power splitting and consistent $90^{\circ}$ (${\pm}5^{\circ}$) phase shifting over a wide bandwidth. In turn, the proposed CP DRA, for the employment of the WHC, in place of conventional designs, provides a significant enhancement on AR bandwidth and impedance matching. The antenna prototype with the WHC exhibits a 3 dB AR bandwidth of 48.66%, an impedance bandwidth of 52.5% for voltage standing wave ratio (VSWR) ${\leq}2$, and a bandwidth of 44.66% for a gain of no less than 3 dBi. Experiments demonstrate that the proposed WHC is suitable for broadband CP DRA design.

A Design of ASP Microstrip Antenna for PCS band and IMT-2000 band (PCS 대역과 IMT-2000 대역 겸용 ASP 마이크로스트립 안테나 설계)

  • Lee, Eun-Gyu;Jang, Young-Chul;Lee, Jae-Wook;Lee, Won-Hui;Hur, Jung
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.397-400
    • /
    • 2001
  • In this paper, to improve bandwidth of microstrip antenna, we discussed the patch structure using Aperture Stacked Patch. To provid PCS service and IMT-2000 service simultaneous, a microstrip patch antenna needs impedance bandwidth of 22%. But typical microstrip patch antennas have impedance bandwidth of 3∼6%. To analyze characteristics of microstrip pach antenna, we used Ensemble of commercial software. The microsrtip patch antenna was designed and fabricated, tuned. We get following results; 650MHz(33%) of impedance bandwidth for VSWR 1.5. The measured gain of ASP microstrip antenna is 6.94dBi.

  • PDF

Tunable Combline Bandpass Filter Using Cross-Coupled Stepped-Impedance Resonators with Enhanced Characteristics

  • Kim, Yoon-Hong;Cho, Young-Ho;Yun, Sang-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.4
    • /
    • pp.144-147
    • /
    • 2008
  • This paper proposes a tunable combline bandpass filter with high selectivity, constant bandwidth, and good stopband performances. A filter with these characteristics is obtained by applying cross-coupling to the conventional combline bandpass filter using stepped-impedance resonators(SIRs). For high selectivity and constant bandwidth, cross-coupling is utilized and the SIR configuration is used for enhanced stopband performances. The proposed combline tunable bandpass filter with 5% of fractional bandwidth at 1.6 GHz was fabricated and tested. The measured results showed 11.6% tunability with constant bandwidth, high selectivity and enhanced stopband characteristics.

Effect of Feed Substrate Thickness on the Bandwidth and Radiation Characteristics of an Aperture-Coupled Microstrip Antenna with a High Permittivity Feed Substrate

  • Kim, Jae-Hyun;Kim, Boo-Gyoun
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.101-107
    • /
    • 2018
  • The impedance bandwidth and radiation characteristics of an aperture-coupled microstrip line-fed patch antenna (ACMPA) with a high permittivity (${\varepsilon}_r=10$) feed substrate suitable for integration with a monolithic microwave integrated circuit (MMIC) are investigated for various feed substrate thicknesses through an experiment and computer simulation. The impedance bandwidth of an ACMPA with a high permittivity feed substrate increases as the feed substrate thickness decreases. Furthermore, the front-to-back ratio of an ACMPA with a high permittivity feed substrate increases and the cross-polarization level decreases as the feed substrate thickness decreases. As the impedance bandwidth of an ACMPA with a high permittivity feed substrate increases and its radiation characteristics improve as the feed substrate thickness decreases, the ACMPA configuration becomes suitable for integration with an MMIC.

K-Band Array Patch Antenna Having Unequal Input Impedance (비균일 입력 임피던스를 갖는 K 밴드 패치 어레이 안테나)

  • Kim, In-Ho;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.9
    • /
    • pp.1050-1055
    • /
    • 2010
  • In this paper, the K band $3{\times}6$ array antenna having unequal input is presented. To control the input impedance of the patch antenna, the length of inset feed is adjusted. Also, the same current in each element is excited by Kirchhoff's law. The proposed unequal impedance array antenna is a nonuniform amplitude array. The bandwidth of the proposed unequal impedance array antenna is wider by 1.5 times than that of the equal array antenna. This broad bandwidth is thought to be due to multiple resonances of patches. The unequal impedance array antennas have fractional bandwidths of 5.07 % and gains of 18.32 dBi.

Design of a Broadband Quasi-Yagi Antenna with a 2:1 Impedance Bandwidth Ratio (2:1 임피던스 대역폭 비를 가지는 광대역 quasi-Yagi 안테나 설계)

  • Lee, Jong-Ig;Yeo, Jun-Ho;Park, Jin-Taek
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.5
    • /
    • pp.760-765
    • /
    • 2012
  • In this paper, we studied a design method for a quasi-Yagi antenna (QYA) with broadband characteristics of an impedance bandwidth ratio greater than 2 : 1 and a gain > 4 dBi. The QYA is fed by a microstrip line fabricated on a coplanar strip line and it consists of 3 elements; a planar dipole, a nearby director close to the dipole, and a ground plane reflector. By placing a wide rectangular patch-type director near to the dipole driver, broadband characteristics are achieved. An optimized 3-element QYA for operation over 1.6-3.5 GHz (bandwidth ratio 2.2 : 1) is fabricated on an FR4 substrate with a size of 90 mm by 90 mm and tested experimentally. The results show an impedance bandwidth of 1.56-3.74 GHz (bandwidth ratio 2.4 : 1) for VSWR < 2, a peak gain of 4.2-6.3 dBi, and a front-to-back ratio (FBR) > 13.6 dB within the bandwidth.

Design of PIFA with a parasitic element for PDA terminal (기생소자를 갖는 PDA 단말기용 PIFA 설계)

  • Kim, Yong-Ho;Lee, Hong-Min
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.511-514
    • /
    • 2003
  • In this paper, describes the design of PIFA for PDA which has parasitic patch to expand the impedance bandwidth and miniaturization technique to consider the radiation pattern. To expand the impedance bandwidth, generated resonant frequency of parasitic patch is different from that of main patch. To miniaturize the physical dimension, using the folded edge and rectangular slot. The obtained impedance bandwidth is 9.4% ($2.29GHz{\sim}2.515GHz$) at VSWR${\leqq}$2 and antenna gain is 2dBi within the operating frequency.

  • PDF