• Title/Summary/Keyword: Impart ionization

Search Result 6, Processing Time 0.017 seconds

The Temperature Dependent Properties for Impact ionization of CaAs (CaAs의 임팩트이온화에 대한 온도의존특성)

  • 고석웅;유창관;정학기;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.520-524
    • /
    • 1999
  • The Impact ionization rate is highly anisotropic at low electron energy, while it becomes isotropic at higher energy range in which impact ionization events frequently accur. In this study, full energy band structure obtained by pseudopotential method and Fermi's golden rule is used to calculate impact ionization rate. The calculated impact ionization rate is well fitted to a modified Keldysh formular at 300K and 77K. Full band Monte Carlo simulator is made to investigate the validity of the GaAs impact ionization coefficients at 300K and 77K. Impart ionization process is isotropic under the condition of steady state since anisotrophy appears during very short time at look. Impart ionization coefficients is nearly constant and is anisotropic in electric field applied along the <110> direction at 77K.

  • PDF

Analysis of Impact ionization models for Si n-MOSFET (Si기반 n-MOSFET의 임팩트이온화모델 분석)

  • ;;;Chaisak Issro
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.268-270
    • /
    • 2002
  • For analysis of semiconductor's electrons transmission characteristics, Impact ionization(I.I.) is very important. I.I. are generation process of electron-hole pairs. Therefore, the characteristics of device can change along with applied voltage or temperature. In this paper, we are scaled down the gate length to 50nm. Also, using TCAD simulator, we are analyzed I.I. and breakdown about three models-Van Overstraeten , Okuto and Ours models.

  • PDF

The anisotropic of threshold energy of impact ionization for energy band structure on GaAs (GaAs 에너지밴드구조에 따른 임팩트이온화의 문턱에너지 이방성)

  • 정학기;고석웅;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.389-393
    • /
    • 1999
  • The exact model of impact ionization events in which has influence on device efficiency, is to be necessary element for device simulation. Recently, a modified Keldysh formula with two set of power exponent of 7.8 and 5.6 is used to simulate carrier transport. This model is, however, not suitable as impact ionization model in low energy range since this ignore direction dependent properties of impact ionization. The impact ionization rate is highly anisotropic at low energy, while it becomes isotropic at higher energy range. Note that impact ionization events frequently occur in high energy range. For calculating impart ionization rate, we use full energy band structure derived from Fermi's golden rule and empirical pseudopotential method. We compare with calculated and experimental value, and investigate direction dependent conduction energy band structure along the direction of <100>, <110> and <111>. We know that the threshold energy of impact ionization is anisotropic and impact ionization rate is very deviated from modified Keldish formula, in relatively low energy range.

  • PDF

The Study on Channel and Doping influence of MOSFET using TCAD (TCAD를 이용한 채널과 도핑 농도에 따른 MOSFET의 특성 분석)

  • 심성택;장광균;정정수;정학기;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.470-473
    • /
    • 2000
  • The metal-oxide-semiconductor field-effect transistor(MOSFET) has undergone many changes in the last decade in response to the constant demand for increased speed, decreased power, and increased patting density. The devices are scaled down day by day. Therefore, This paper investigates how MOSFET structures influence on transport properties in according to change of channel length and bias and, observes impact ionization between the drain and the gate. This paper proposes three models, i.e., conventional MOSFET, LDD MOSFET and EPI MOSFET. The gate lengths are 0.3$\mu\textrm{m}$ 0.15$\mu\textrm{m}$, 0.075$\mu\textrm{m}$ and scaling factor is λ = 2. We have presented MOSFET's characteristics such as I-V characteristic, impart ionization, electric field, using the TCAD. We have analyzed the adaptive channel and doping influences

  • PDF

Influence of the density of states and overlap integral on impact ionization rate for silicon (상태밀도와 overlap integral이 실리콘내 전자의 임팩트이온화율에 미치는 영향)

  • 정학기;유창관;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.394-397
    • /
    • 1999
  • Impact ionization, which is a kind of a carrier-carrier interaction process occurring in a semiconductor under the influence of a high electric field, is necessary to analyse carrier transport properties. Since the parabolic or nonparabolic E-k relation is different from real band structure in high energy range, exact model of impart ionization have been presented using full band I-k relation and Fermi's golden rule. We have investigated relation of density of states, energy band structure and overlap integral. We make use of empirical pseudopotential method in order to calculate energy band structure of silicon, tetrahedron method in order to calculate density of states. We know density of states very depends on energy band structure and overlap integral depends on the primary electron energy.

  • PDF

Analysis on the Scaling of Nano Structure MOSFET (나노 구조 MOSFET의 스켈링에 대한 특성 분석)

  • 장광균;정학기;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.311-316
    • /
    • 2001
  • The technology for characteristic analysis of device for high integration is changing rapidly. Therefore to understand characteristics of high-integrated device by computer simulation and fabricate the device having such characteristics became one of very important subjects. At devices become smaller from submicron to nanometer, we have investigated MOSFET built on an epitaxial layer(EPI) of a heavily-doped ground plane, and also newEPI MOSFET for improved structure to weak point of LDD structure by TCAD(Technology Computer Aided Design) to develop optimum device structure. We analyzed and compared the EPI device characteristics such as impart ionization, electric field and I-V curve with those of lightly-doped drain(LDD) MOSFET. Also, we presented that TCAD simulator is suitable for device simulation and the scaling theory is suitable at nano structure device.

  • PDF