• Title/Summary/Keyword: Impact vibration

Search Result 1,463, Processing Time 0.022 seconds

The Vibration Characteristic of Large Main Steam Pipelines in Power Plant (발전소의 대형 주증기배관의 진동 특성)

  • Kim, Yeon-Whan;Lee, Hyun
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.709-715
    • /
    • 1996
  • In recent years, the piping vibration in many Power Plants is being increased by the aged generating facilities due to a long time use. Generally, the pressure fluctuations associated with the flow-induced excitations in this case are broadband in nature. Mainly, the dominant sources of vibration are a vortex-shedding, plane waves and boundary layer turbulence. The peak level of the spectrum is proportional to the dynamic head. A severe disturbance in pipeline results in the generation of intense broadband internal sound waves which can propagate through the piping system. The characteristic frequencies of operating loads of 20%, 57%, 70%, 100% are 4 - 6 Hz and coincide with the results from impact hammering test and FEM analysis. We chose the wire energy absorbing rope restraint as a vibration reduction method after reviewing the various conditions such as site, installing space and economic cost etc. After installation, the vibration level was reduced about 54% in velocity.

  • PDF

Vibration and noise control of slab using the multi-tuned mass damper (다중질량감쇠기를 이용한 슬래브의 진동 및 소음저감에 관한 연구)

  • Hwang, Jae-Seung;Kim, Hong-Jin;Kang, Kyung-Soo;Hong, Gun-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.659-664
    • /
    • 2008
  • In this study, it is outlined that heavy weight floor impact noise induced by the vibration of slab can be reduced by multi tuned mass damper(MTMD) effectively. Substructure synthesis is utilized to develope analytical model of slab coupled with MTMD and acoustic power is introduced to evaluate the performance of noise control for simplicity. Numerical analysis is carried out to investigate the effect of the properties of MTMD on the vibration and noise control. Numerical analysis shows that mass ratio of MTMD is critical on the vibration and noise control of the slab and it is essential to reduce the vibration in higher modes of slab because it has a great effect on the radiation of sound.

  • PDF

Design and Experiment of an Electromagnetic Vibration Exciter for the Rapping of an Electrostatic Precipitator

  • Kim, Je-Hoon;Kim, Jin-Ho;Jeong, Sang-Hyun;Han, Bang-Woo
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.61-67
    • /
    • 2012
  • The miniaturization of an electrostatic precipitator has become a key element in successfully constructing an efficient electrostatic precipitator because of the limited space allowed for installation in a subway tunnel. Therefore, the miniaturization of the rapping system of the electrostatic precipitator has also become important. This research proposes a resonant-type electromagnetic vibration exciter as a vibrating rapper for an electrostatic precipitator. The compact vibrating rapper removes collected dust from the collecting plates without direct impact on those collecting plates. To characterize the dynamic performance of the electromagnetic vibration exciter, finite element analysis was performed using a commercial electromagnetic analysis program, MAXEWLL. Moreover, we analyzed the resonant frequency of an electrostatic precipitator, to which the electromagnetic vibration exciter was applied, by ANSYS. Also, to measure the acceleration generated by the electromagnetic vibration exciter, we manufactured a prototype of the ESP and electromagnetic vibration exciter and measured its acceleration at the resonant frequency.

Solution of Noise-Vibration Problems of Urban Public Housing Adjacent to Railway

  • Park, Jong-Bae;Jang, Yeon-Soo;Kim, Hyo-Jin
    • Land and Housing Review
    • /
    • v.5 no.3
    • /
    • pp.169-177
    • /
    • 2014
  • Constructing urban public housing built adjacent railway site has the noise and vibration problem coming from operation of trains. Thus, anti-vibration plans utilizing anti-vibration pads must be established to minimize the impact of train noise and vibration from the tunnels on the residents of the public housing. Under various difficulties and expectation from the citizens, many efforts were taken to satisfy the amenity requirements on noise and vibration for the residential area. As a results, it can be recognized that amenity standards can be satisfied. But great caution is required to prepare ourselves for various situations that might occur during construction, especially considering that the relevant railroads are still under operation.

Effect of Vibration Suppression Device for GNSS/INS Integrated Navigation System Mounted on Self-Driving Vehicle

  • Park, Dong-Hyuk;Ahn, Sang-Hoon;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.2
    • /
    • pp.119-126
    • /
    • 2022
  • This paper presents a method to reduce the vibration-induced noise effect of an inertial measurement device mounted on a self-driving vehicle. The inertial sensor used in the GNSS/INS integrated navigation system of a self-driving vehicle is fixed directly on the chassis of vehicle body so that its navigation output is affected by the vibration of the vehicle's engine, resulting in the degradation of the navigational performance. Therefore, these effects must be considered when mounting the inertial sensor. In order to solve this problem, this paper proposes to use an in-house manufactured vibration suppression device and analyzes its impact on reducing the vibration effect. Experimental test results in a static scenario show that the vibration-induced noise effect is more clearly observed in the lateral direction of the vehicle, but can be effectively suppressed by using the proposed vibration suppression device compared to the case without it. In addition, the dynamic positioning test scenario shows the position, speed, and posture errors are reduced to 74%, 67%, and 14% levels, respectively.

A Case Study on the Comparison and Assessment between Environmental Impact Assessment and Post-Environmental Investigation Using Principal Component Analysis (주성분분석을 이용한 환경영향평가와 사후환경조사의 비교 및 평가에 관한 사례연구)

  • Cho Il-Hyoung;Kim Yong-Sup;Zoh Kyung-Duk
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.2 s.83
    • /
    • pp.134-146
    • /
    • 2005
  • Environmental monitoring system has been adopted and supplemented as inspection measures for the quantitative and qualitative changes of environmental impact assessment (EIA). This study compares the results of environmental impact assessment with the results of post-environmental investigation using a correction and principal component analysis (PCA) in the housing development project. Correlation analysis showed that most of air quality variables including TSP, $PM_{10},\;NO_2$, CO were linearly correlated with each other in the environmental impact assessment and the post-environmental investigation. In the water quality, pH and BOD were well correlated with the DO and SS, respectively. As a result of correlation analysis in the noise and vibration, noise in day and night and vibration in day and night were related to each other between EIA and the post-environmental investigation. From the results of analysis of soil, Cu with Cd, Cu with Pb, and Cd with Pb were related to each other in EIA. Principal component analysis (PCA) showed a powerful pattern recognition that had attempted to explain the variance of a large dataset of inter-correlated variable with a smaller set of independent variables (principal components). Principal component (PC1) and principal component (PC2) were obtained with eigenvalues> 1 summing almost $90\%$ of the total variance in the all of the items(air, water, noise, vibration and soil) in EIA and post-environmental investigation.

Analysis of Pillar Stability for Ground Vibration and Flyrock Impact in Underground Mining Blasting (발파진동 및 비산충격에 대한 광주 안정성 분석)

  • Park, Hyun-Sik;Kim, Ji-Soo;Ryu, Bok-Hyun;Kang, Choo-Won
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.9-20
    • /
    • 2012
  • These days, mining industry prefers underground development for large mining because of exhaustive minning resources and large drafts and mining cavities thanks to extensive distribution of heavy excavation machines. In a mining design, to control collapse of cavities and secure stability, design of cavities and pillars are considered as very important. Therefore, this study obtained a prediction equation of blasting vibration through instrumentation for underground cavities. And we obtained theoretical shock vibration imposed on pillar through fragmentation analysis and measurement of flyrock distance. To examine the influence of pillar in underground mining blasting, we carried a finite element analysis and compared the result with prediction equation of blasting vibration, and shock vibration of flyrock when a impact was imposed on pillar and theoretical shock vibration.

A Study on the Floor Impact Sound Insulation Performance of Apartments depending on the Damping Materials (완충구조에 의한 공동주택 바닥충격음 차단성능 변화 연구)

  • Gi, No-Gab;Song, Min-Jeong;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.79-82
    • /
    • 2005
  • This study aims to propose fundamental data for development of noise reduction system that is applied to classification for light-weight impact sound. For this reason, eight types of damping materials were constructed in new construction field. Comparison and analysis among the reduction materials were carried out on the acoustical characteristics through test. In the end, the suitability as a damping material was evaluated by the analysis.

  • PDF

A Study on the Effect by Receiving Points as Measuring Floor Impact Sound (바닥충격음 측정 시 수음점 위치의 영향에 관한 연구)

  • Chung, J.Y.;Lee, S.H.;Jeong, G.C.;Oh, Y.K.;Joo, M.K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.283-286
    • /
    • 2005
  • This study measures the levels of various receiving points for reducing deviations the floor impact sound. According to the results, 63-125Hz band appeals the large deviations. Among the spacial points, the spot of 0.75m from the wall correspond with the average of all spots. The KS stipulates that the receiving point should be off the wall more than 0.5m But obeying the rules, the large deviation appears. So, this study shows that the adequate receiving point is 0.75m from the wall.

  • PDF

Criteria for multiple noises in residential buildings uslng combined rating system (공동주택 생활소음의 통합 평가등급 설정)

  • Ryu, Jong-Kwan;Lee, Pyoung-Jik;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.367-371
    • /
    • 2005
  • Social noise survey on multiple residential noises such as nut impact, air-borne, bathroom, drainage and traffic noises was conducted to investigate major variables affecting the overall satisfaction for noise environment The effect of individual noise perception on the evaluation of the overall noise environment was investigated through a questionnaire survey on annoyance, disturbance and noise sensitivity. Auditory experiments was also undertaken to determine noise level according to the percent of satisfaction for individual noise source. As a result of survey, it was found that satisfaction for floor impact noise most greatly affects the overall satisfaction for noise environment and annoyance most greatly affects the satisfaction for individual noise sources. Result of auditory experiment showed that the noise level of floor impact noise by bang machine, airborne, drainage and traffic noise corresponding to 50% satisfaction is 44dB($L_{i,Fmax,AW}$) and 40dBA, respectively.

  • PDF