• 제목/요약/키워드: Impact vibration

검색결과 1,462건 처리시간 0.026초

진동대 실험을 통한 보행진동과 뒷꿈치 충격진동의 인지수준 비교 (Investigation on Human Perception Level under Walking and Heel Drop Vibrations Using Shaking Table Test)

  • 한상환;이상욱
    • 한국소음진동공학회논문집
    • /
    • 제13권3호
    • /
    • pp.186-193
    • /
    • 2003
  • Floor vibrations in residence and office buildings are typically induced by heel drop and walking movement of occupants. The criteria of most vibration provisions have been developed based on the vibration caused by heel drop impact rather than walking. There may be considerable differences between the vibration characteristics induced by walking and heel drop. The effect of walking vibration was not well reflected on current provisions. In this paper, shaking table test was performed to investigate the human perception level against the vibrations due to walking and heel drop. This study attempts to compare the human Perception level of two different vibration sources. Also, this study investigates the effect of damping on a Perception level under heel drop and walking vibration.

우드파일 메타물질의 변수 별 진동 및 충격에 끼치는 영향 (Vibration and Impact Transmission for each Variable of Woodpile Metamaterial)

  • 하영선;황희윤;전성식
    • Composites Research
    • /
    • 제34권3호
    • /
    • pp.155-160
    • /
    • 2021
  • 메타물질은 자연발생 물질에서 발견되지 않는 특성을 만들 수 있는 여러가지 요소들의 복합체로, 힘의 방향을 변환하거나, 음의 강성을 만들거나, 진동 및 충격 특성을 바꿀 수 있다. 제작이 용이하고, 수직방향의 진동과 충격을 저감시키는데 탁월한 성능을 지닌 우드파일 메타물질의 경우, 충격 저감을 위해 충격 전달에 영향을 끼치는 변수에 대한 기초 연구가 필요하다. 최근 기하학적 요소에 따른 충격저감에 대해 연구가 진행되고 있지만, 재료적 변수가 충격저감에 끼치는 영향에 대한 연구는 미흡하다. 본 논문에서는 우드파일 실린더의 기하학적 특성(적층각도, 직경, 길이)과 재료적 특성(탄성계수, 비중, 포아송 비)을 변수화하여 유한요소해석이 진행되었다. 유한요소해석을 통해 우드파일 실린더가 충격을 전달하는 양상을 확인하고, 주효과도 분석을 통해 충격 힘과 에너지의 저감에 대한 변수 별 영향이 고찰되었고, 고속 푸리에 변환(FFT)을 통해 주파수 대역에 대한 분석이 진행되었다. 충격 힘과 진동을 저감시키기 위하여 실린더의 접촉 면적에 영향을 주는 변수들이 크게 영향을 끼치는 것으로 나타났다.

웨이브렛 해석을 이용한 승용차의 충격 하쉬니스 개선 (A Study on Estimation of Coefficient Using Wavelet Transform and Its Application to the Evaluation of Harshness in Passenger Car)

  • 이상권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1710-1715
    • /
    • 2000
  • Estimation of damping ratio for vibration signals measured on the passenger car's seat is useful for the objective evaluation of impact harshness in car. The vibration signal is a transient signal represented by many coupled modes of suspension system. Wavelet transform automatically decouples these modes in the time-frequency domain. Damping ratios for decoupled modes are obtained by logarithmic treatment for the Wavelet transformed signal. The objective evaluation using Wavelet transform has been well corresponded with subjective evaluation done by skilled engineers.

  • PDF

자동선반 기어박스의 진동방지 (Vibration Reduction or the Gear Box of an NC Machine)

  • 최헌호
    • 한국생산제조학회지
    • /
    • 제8권6호
    • /
    • pp.119-125
    • /
    • 1999
  • This article proposes the analytical and experimental approaches for the reduction of vibration generated in the gear box of an NC machine. The lateral critical speed of main spindle and torsional natural frequencies were analyzed and the impact testing of gear box was performed. These results were compared with the forced operating speeds, The vibration was much diminished by redesign of gear module and reinforcement of box structure.

  • PDF

방진 매트의 적용에 따른 지하철 영향평가와 안전에 관한 연구 (A Study on Safety and Impact on Subway by Application of Vibration-Proof Mat)

  • 우경하;이창호
    • 대한안전경영과학회지
    • /
    • 제21권3호
    • /
    • pp.17-21
    • /
    • 2019
  • With the development of public transportation, the use of subways as a means of transportation in the city center is increasing, so that vibrations and structural noises are emerging as a new environmental issues. This study can be used as a basis for research on subway safety and shock mitigation by applying vibration-proof mat.

수음실 잔향시간 변화에 따른 중량 충격음 레벨 특성 - 실험실 환경을 중심으로 - (Floor Impact Sound Pressure Level Characteristics by the Change of Reverberation Time in Mock-up Test Rooms)

  • 정정호;이병권;연준오;전진용
    • 한국소음진동공학회논문집
    • /
    • 제24권4호
    • /
    • pp.339-347
    • /
    • 2014
  • Floor impact sound in high-rise apartment building became one of social problems. A lot of civil complaints on floor impact sound occur continuously and the number of disputes between neighbors in small and aged apartment buildings is increasing. Interests on heavy-weight impact sound pressure level measurement and evaluation method is increased. Previous study reported that heavy-weight impact sound level was changed by the sound field condition of receiving reverberation chamber. In this study, heavy-weight impact sound pressure level change by the receiving sound field condition was measured in standard test facility and mock-up test room. These two experimental conditions were designed to simulate averaged living room of common apartment units. By the change of sound absorption power in receiving room, heavy-weight impact sound pressure level in most of frequency bands were changed in standard test facility and mock-up room. Normalized maximum sound pressure level regulated in ISO 16032 showed wider range of heavy/soft impact sound pressure level. Heavy/soft impact sound pressure level change was became smaller by the application of standardized maximum sound pressure level and ISO/CD 10140-3 Amd 2 method. In the case of standardized maximum sound pressure level, absolute sound pressure level changed. From these results, receiving sound field correction method regulated in ISO/CD 10140-3 Amd 2 is needed for the precision measurement and evaluation of heavy-weight impact sound.

디지털 항타관리기(DPRMS)의 진동영향 평가 및 측정 정밀도 향상 방안에 관한 연구 (Vibration Evaluation and Accuracy Improvement for a Digital Pile Rebounding and Penetration Monitoring System (DPRMS))

  • 홍정택;이계영;이상헌;한승수;정진태
    • 한국소음진동공학회논문집
    • /
    • 제16권5호
    • /
    • pp.514-520
    • /
    • 2006
  • In this study, the performance of a digital pile rebounding and penetration monitoring system (DPRMS) is evaluated and the measurement precision of the DPRMS is improved. The DPRMS is a high speed line-scanning camera system to measure the rebound and penetration of a pile in a construction work. A main problem in the DPRMS is a measurement error, which is caused by a shock or vibration due to a hammer impact. The measurement error is investigated by analyzing vibration signals of the DPRMS during the impact. Moreover, the frequency response functions of the DPRMS are also analyzed. As a result, it is found that the tripod height has an influence on the DPRMS performance and a shorter tripod is better. One more founding in this study is that the DPRMS should be placed with a appropriate distance from a pile for improving the measurement precision.

Nano-graphene oxide damping behavior in polycarbonate coated on GFRP

  • Mohammad, Afzali;Yasser, Rostamiyan;Pooya, Esmaeili
    • Structural Engineering and Mechanics
    • /
    • 제84권6호
    • /
    • pp.823-829
    • /
    • 2022
  • This study considered the experimental parameters (Nano-graphene oxide reinforced polycarbonate, GFRP) under low-velocity impact load and vibration analysis. The effect of nano-graphene oxide (NGO) on a polycarbonate-based composite was studied. Two test procedures were adopted to obtain experimental results, vibration analysis. The mechanical tests were performed on damaged and non-damaged specimens to determine the damaging effect on the composite specimens. After the test was carried out, the effect of NGO was measured and damping factors were ascertained experimentally. 0. 2 wt% NGO was determined as the optimum amount that best affected the Vibration Analysis. The experiments revealed that the composite's damping properties were increased by adding the nanoparticles to 0.25 wt% and decreased slightly for the specimens with the highest nanoparticles content. Cyclic sinus loading was applied at a frequency of 3.5 Hz. This paper study the frequency effect of 3.5khz frequency damage on mechanical results. Found that high frequency will worthlessly affect the fatigue life in NGO/polycarbonate composite. In 3.5 Hz frequency, it was chosen to decrease the heat by frequency. Transmission electron microscopy (TEM) micrographs were used to investigate the distribution of NGO on the polycarbonate matrix and revealed a homogeneous mixture of nano-composites and strong bonding between NGO and the polycarbonate which increased the damping properties and decreased vibration. Finally, experimental modal analysis was conducted after the high-velocity impact damage process to investigate the defect on the NGO polycarbonate composites.

건식이중바닥구조의 중량충격음에 대한 실험적 평가 - 지지구조 및 천장구조 구성에 따른 영향 - (Experiment Evaluation for the Heavy-weight Impact Sound of Dry Double-floor System - Effect of Rubber Hardness and Ceiling Structure -)

  • 연준오;김경우;최현중;양관섭;김경호
    • 한국소음진동공학회논문집
    • /
    • 제23권1호
    • /
    • pp.34-40
    • /
    • 2013
  • The 1st assessment(performance test) was applied to assure the floor impact sound performance for developing the dry double-floor with the change of rubber hardness of the upper panel's support and the ceiling structure of the sub-floor. Depends on the change of the rubber hardness in sub-structure, the heavy-weight sound impact value is improved up to 3 dB, and the light-weight sound impact value is moved up to 21 dB, comparing with the bare-slab. Also, the improved value for the floor impact sound conjugating with the sub-floor's ceiling was 5 dB. Based on this result, the 2nd assessment(performance test) was made the state that the rubber hardness of the sub-floor support was ranged between 50 and 70 for considering the stability of walking patients. In addition to this process, the assessment was carried out with a variety of ceiling structure applied to the dry double-floor structure with the air flow system on the sub-floor's ceiling. The result for the 2nd assessment proved that TYPEII-3 had the better sound reduction performance in the heavy-weight impact sound test than other types, and also for the light-weight impact sound TYPEII-3 had the 29 dB sound reduction performance overall. Henceforth, based on the result the research for the sound reduction performance from the floor impact sound shall be ongoing process as well as the development of a double-dry floor and a sound reduction ceiling to suitable on the field.

건식 이중바닥구조의 중량충격음 저감성능 평가 (Evaluation for The Heavy-weight Impact Sound Reduction Performance of Dry Double-Floor System)

  • 연준오;김경우;최현중;양관섭;김경호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.280-285
    • /
    • 2012
  • The 1st assessment (performance test) was applied to assure the floor impact sound performance for developing the dry double- floor with the change of rubber hardness of the upper panel's support and the ceiling structure of the sub-floor. Depends on the change of the rubber hardness in substructure, the heavy-weight sound impact value is improved up to 3 dB, and the light-weight sound impact value is moved up to 21 dB, comparing with the bare-slab. Also, the improved value for the floor impact sound conjugating with the sub-floor's ceiling was 5dB. Based on this result, the 2nd assessment (performance test) was made the state that the rubber hardness of the sub-floor support was ranged between 50 and 70 for considering the stability of walking patients. In addition to this process, the assessment was carried out with a variety of ceiling structure applied to the dry doublefloor structure with the air flow system on the sub-floor's ceiling. The result for the 2nd assessment proved that TYPE-11 had the better sound reduction performance in the heavy-weight impact sound test than other types, and also for the light-weight impact sound TYPE-11 had the 29 dB sound reduction performance overall. Henceforth, based on the result the research for the sound reduction performance from the floor impact sound shall be ongoing process as well as the development of a double-dry floor and a sound reduction ceiling to suitable on the field.

  • PDF