• Title/Summary/Keyword: Impact vibration

Search Result 1,462, Processing Time 0.032 seconds

A Prediction Model of Piston Slap Induced Vibration Velocity of Engine Block Surface (피스톤 슬랩에 의해 발생되는 엔진 블록의 표면 진동 속도 예측 모델)

  • 안상태;조성호;김양한;이동수
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.587-592
    • /
    • 1999
  • Piston slap is one of the sources producing engine block surface vibration and mechanical noise. To analyze piston slap-induced vibration, a realistic but simple model is proposed and verified experimentally. A piston is modeled by 3 degree of freedom system and an impact point between piston skirt and cylinder wall by 2 degree of freedom system. Numerical simulation estimates impact forces of piston in cylinder, and the engine block surface vibration response is predicted by the convoluton of the impact forces with measured impulse responses. Experimental verification on the predicted response has been also performed by using a commercial 4-cylinder diesel engine. the predicted and experimental vibration responses confirm that the suggested model is practically useful.

  • PDF

Contribution of the Mode Vibration to Heavy Weight Floor Impact Noise (슬래브 진동모드의 바닥충격음 기여특성에 관한 연구)

  • Hwang, Jae-Seung;Park, Hong-Gun;Moon, Dae-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.159-160
    • /
    • 2014
  • The floor impact noise arising between upper and lower households in residential houses has been known as one of major causes worsening residential environment and still led to serious social troubles in a residential community. It is known that the heavy weight floor impact noise is induced by flexural vibration modes in the relatively lower frequency ranges. In this study, a procedure is examined to evaluate the relations between the vibration modes and the corresponding noise of the slab. In the process, for simplicity of the numerical analysis, it is assumed that the slab is simply supported plate-like structure and the acoustic mode formed in the lower room by acoustic boundary conditions is ignored.

  • PDF

Vibration isolation effect of floor impact sound by ceiling structure (바닥충격음에서의 천장구조에 따른 진동절연 효과)

  • Lee, S.H.;Jeong, G.C.;Chung, J.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.257-260
    • /
    • 2004
  • This study aims to evaluate factors of ceiling structure influencing to the floor impact sound. For this reasons, we measured the vibration of ceiling and the floor impact sound by ceiling structure. The main results from this study are that ceiling structure makes worse to non-ceiling structure for an effect of air layer in heavy-weight floor impact sound. But it has an effect on light-weight floor impact sound about $2\sim8dB$.

  • PDF

Noise and Vibration Characteristics of Heavy-weight floor impact by Using Damping Materials (감쇠재 사용에 따른 중량충격음의 소음 및 진동특성)

  • Jeon, Jin-Yong;Jeong, Young;Song, Hee-Soo;Kim, Min-Bae;Lee, Young-Je
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.97-102
    • /
    • 2004
  • The Characteristics of noise and vibration by heavy-weight floor impact sound was studied. Resonance frequency increased a little in structures that use damping material in living room and bedroom, and acceleration waves length that respond became short, and displayed aspect that oscillation level decreases. Result that measure sound pressure level, structure that compare and applies damping materials with structure that apply the resilient materials from 63Hz lower part that impact energy is concentrated in energy spectrum of heavy-weight floor impact sound displayed result that sound pressure, level decreases remarkably. Therefore, according to use of damping materials, confirmed reduction effect of heavy-weight floor impact sound.

  • PDF

Heavy-weight Impact Noise Reduction of Concrete Slab Reinforcement Using F.R.P (F.R.P 재료 보강에 의한 신개념 중량충격음 저감대책)

  • Jeong, Jeong-Ho;Yoo, Seung-Yup;Lee, Pyoung-Jik;Jeon, Jin-Yong;Jo, A-Hyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.383-386
    • /
    • 2005
  • Low frequency heavy-weight impact noise is the most irritating noise in Korean high-rise reinforced concrete apartment buildings. This low frequency noise is generated by foot traffic due to the fact that Koreans do not wear shoes at home. The transmission of the noise is facilitated by a load bearing wall structural system without beams and columns which is used in these buildings. In order to control low frequency heavy-weight impact noise, floating floors using isolation materials such as glass-wool mat and poly-urethane mat are used. However, it was difficult to control low frequency heavy-weight impact sound using isolation material. In this study, reinforcement of concrete slab using beams and plate was conducted. Using the FEM analysis, the effect of concrete slab reinforcement using FRP(fiber-glass reinforced plastic) on the bang machine impact vibration acceleration level and sound were conducted at the standard floor impact sound test building. The $3{\sim}4dB$ floor impact vibration acceleration level and impact sound pressure level were reduced and the natural frequency of slabs were changed.

  • PDF

Development of Pre-assessment Technique for Environmental Impact of Urban Subway Vibration on Newly Planned Buildings (도시지하철 진동이 신축예정 건축물에 미치는 영향에 대한 사전환경평가 기법개발)

  • 박상규;이홍기;박원형
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1197-1200
    • /
    • 2003
  • Urban subways usually make environmental problems because subway vibrations are transmitted to building structures. However, when the buildings are designed, vibrations due to subway are not usually considered in advance. This results in many environmental vibration problems after buildings are constructed. This study was carried out to set up and evaluate a pre-assessment technique for the environmental impact of urban subway vibration on newly planned buildings near a subway line. for this purpose, semi-emperical method was set up and vibration measurements were made on site in accordance with construction schedule. Computer simulation was also performed using ANSYS software to predict the building vibration and compared with the measured results for evaluation of the pre-assessment technique.

  • PDF

A Study on the Determination of Vibration Criteria for Vibration Sensitive Equipments Using Impact Test (충격시험을 이용한 고정밀장비의 진동허용규제치 결정기법에 관한 연구)

  • 이홍기;박해동;김두훈;김사수
    • Journal of KSNVE
    • /
    • v.7 no.2
    • /
    • pp.247-254
    • /
    • 1997
  • In the case of a precision equipment, it requires a vibration free environment to provide its proper function. Especially, lithography and inspection devices, which have sub-nanometer class high accuracy and resolution, have come to necessity for producing more improved giga class semiconductor wafers. This high technology equipments require very strict environmental vibration standard in proportion to the accuracy of the manufacturing, inspecting devices. The vibration criteria are usually obtained either by the real vibration exciting test on the equipment or by the analytical calculation. This paper proposes a new method to solve this problem at a time. The permissible vibration level to a precision equipment can be easily obtained by analyzing a process of Frequency Response Function. This paper also demonstrates its effectiveness by applying the proposed method to finding the vibration criteria of a Computer Hard Disk Driver by Impact Test.

  • PDF

An Experimental Study on the Vibration Response Characteristics of Floating Floor Systems for Heavyweight Impact Noise Reduction. (바닥충격음 차단을 위한 뜬바닥 구조의 진동응답특성에 관한 실험적 연구)

  • Choi, Kyung-Suk;Seok, Won-Kyun;Mauk, Ji-Wook;Shin, Yi-Seop;Kim, Hyung-Joon;Kim, Jeong-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.227-228
    • /
    • 2023
  • A floating floor generally consists of mortar bed separated from the structural RC slab by a continuous resilient layer. It is known that the floating floors are a type of vibration-isolation system to improve the impact sound insulation performance. However, some researchers have demonstrated that the amplification of vibration response at a specific range of frequencies results in an increase in the impact sound level. This study carried out the forced vibration tests to obtain the frequency response function (FRF) of a floating floor compared with a bare RC slab. Test results shows that the additional peak occur in vibrational spectrum of the floating floor except natural vibration modes of the bare RC slab. This is because the relatively flexible resilient material and mass of the mortar bed offer an additional degree of freedom in the structural system. Therefore, it could be efficient for reduction of floor impact vibration and noise to control the additional mode frequency and response of floating floors.

  • PDF

3-D Vibration Modes of the Tire in Ground Contact and Its Effects on Axle When Excited by a 3-D Impact at the Center of Contact Patch (접지면 중앙에서 3차원 방향의 충격 가진에 의한 타이어의 3차원 진동형이 축에 미치는 영향)

  • 김용우;남진영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.171-182
    • /
    • 2003
  • Tire vibration modes are known to play a key role in vehicle ride and comfort characteristics. Inputs to the tire such as impacts, rough road surface, tire nonuniformities, and tread patterns can potentially excite tire vibration. In this study, experimental modal analysis on the tire in ground contact are performed by a 3-D impact at the center of contact patch to investigate which modes of tire influence the vibration of wheel and axle. Through the experiment, the vibration transmission properties from tire to axle are examined. And we have compared the influential tire modes when the tire is excited by a vertical impact with those when excited by the 3-D impact. Additionally, the modes of ground contact tire are compared with those of the suspended tire.

An Experimental Study on the Characteristics of Impact Vibration Absorber with Free Mass (자유질량체를 갖는 충격식 흡진기의 특성에 관한 실험적 연구)

  • Yang, Bo-Suk;Kim, Jong-Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.75-81
    • /
    • 1992
  • In this paper, an impact vibration absorber that reduces the high vibration amplitude of a vibrating system is studied. This absorber consists of a free mass allowed to impact on to the secondary leaf spring so that the vibration energy is dissipated by converaion into noise and heat. The experimental parameters are weight of the free mass and impat clearance. According to the measured results, the high vibration in resonance region is reduced more effectively by the impact clearance ratio than by the mass ratio.

  • PDF