• Title/Summary/Keyword: Impact vibration

Search Result 1,469, Processing Time 0.03 seconds

Ride Analysis of A Semi-Active Suspension Seat with Sky-Hook Control (스카이-훅 제어를 이용한 반능동 현가식 운전석의 승차감 해석)

  • Kang, T.H.;Baek, W.K.
    • Journal of Power System Engineering
    • /
    • v.6 no.2
    • /
    • pp.33-39
    • /
    • 2002
  • Commercial vehicles are mostly subjected to relatively rougher ground environment than passenger vehicles. Many driver's seats of commercial vehicles have suspension system with spring and dampers. Then, impact or vibrative forces transmitted from the vehicle to the driver can be attenuated. This study deals with a ride evaluation method using sky-hook control algorithm for the suspension dampers. Vibration amplitude transmissibilities were compared between passive dampers and semi-active dampers with sky-hook control method.

  • PDF

Bearing Modeling of Superconducting Magnetic Bearings-Flywheel System (초전도 자기베어링-플라이휠 시스템의 베어링 모델링)

  • 김정근;이수훈
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.891-898
    • /
    • 1999
  • The purpose of Superconducting Magnetic Bearing Flywheel Energy Storage System (SMB-FESS) is to store unused nighttime electricity until it is needed during daytime. An analytical model of the SMB-FESS is necessary to identify the system behavior. At first, we have to model the superconducting magnetic bearing. Modeling the SMB is same as estimating the bearing parameter. The theoretical modal parameter is calculated through the equation of motion and the experimental modal parameter is estimated through the impact testing (modal testing). The bearing parameter is searched by using the non-linear least square method until the theoretical result corresponds to the experimental result. The suggested modeling method is verified by comparing experimental and analytical frequency response function.

  • PDF

Noise Prediction and Design of Soundproof Facilities for the High Speed Train (고속열차(TGV) 주행시 연변에서의 소음예측 및 방음시설설계)

  • ;J. P. Clairbois
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1106-1115
    • /
    • 1999
  • This paper sums up the study of the soundproof facilities (noise barriers) to be placed on the test track section within the Seoul-Pusan H.S.T. project. The objective of this study is to determine optimum design of soundproof including height, length, location, sound absorbing materials for test track(chonan-taejon). This paper shows the model to design the shape and materials of noise barrier for high speed trains(TGV, ICE, ect). The design of soundproof facilities is to be conducted by MITHRA for the prediction of noise impact of the TGV and for optimising noise barriers in order to reduce the noise generated by high speed trains. A number of computer simulations are carried out in order to determine the specification of noise barrier on test track.

  • PDF

Perturbation analysis for robust damage detection with application to multifunctional aircraft structures

  • Hajrya, Rafik;Mechbal, Nazih
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.435-457
    • /
    • 2015
  • The most widely known form of multifunctional aircraft structure is smart structures for structural health monitoring (SHM). The aim is to provide automated systems whose purposes are to identify and to characterize possible damage within structures by using a network of actuators and sensors. Unfortunately, environmental and operational variability render many of the proposed damage detection methods difficult to successfully be applied. In this paper, an original robust damage detection approach using output-only vibration data is proposed. It is based on independent component analysis and matrix perturbation analysis, where an analytical threshold is proposed to get rid of statistical assumptions usually performed in damage detection approach. The effectiveness of the proposed SHM method is demonstrated numerically using finite element simulations and experimentally through a conformal load-bearing antenna structure and composite plates instrumented with piezoelectric ceramic materials.

A Study on the Nonlinear Dynamic Behaviors of Arches due to the Change of Shapes and Boundary conditions (형상과 단부조건에 따른 아치의 비선형 동적거동)

  • 여동훈;이상호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.441-448
    • /
    • 1998
  • In this study, an explicit transient analysis program considering material and geometric nolinearities has been developed and used to analyze the dynamic behaviors of circular, parabolic, sinusoidal and catenary arches according to the change of shapes and boundary conditions. To understand dynamic behaviors of arches, first of all, the results of free vibration analysis for four kinds of arches are discussed. The results of transient analysis under impact loads we discussed in respect of boundary condition, change of height, and arch-shape. The dynamic behaviors of arches by nonlinear transient analysis considering both material and geometric nolinearities are also discussed.

  • PDF

Analysis of Noise Source for Mold Transformer (몰드변압기의 소음 원인 분석)

  • Choi, W.H.;Kim, W.C.
    • Journal of Power System Engineering
    • /
    • v.4 no.4
    • /
    • pp.59-64
    • /
    • 2000
  • Especially, demands for the noise reduction of mold transformer has been becoming an common issue because it has been used mainly at the residence area such as building and ship. So, this paper investigates the noise source and countermeasure of mold transformer radiated high noise abnormally. The result of impact hammering test for core of transformer ascertains the core resonance by harmonics of line frequency and high noise can be reduced to avoid core resonance by changing torque strength of tie rod. Magnetic field analysis is performed to identify the reason that noise of V-phase is higher than U and W-phase in the normal condition. It is the cause that flux density and magnetic force of V-phase is higher than the other phase respectively.

  • PDF

Motion Analysis and Control of Translation Device Driven by Piezoelectric Actuator (압전형 구동기를 갖는 이동기구의 운동해석 및 제어)

  • 이석구;지원호;이종원
    • Journal of KSNVE
    • /
    • v.2 no.1
    • /
    • pp.49-59
    • /
    • 1992
  • The motion analysis of a translation device driven by a piezoelectric actuator is performed to identify the mechanics of impact drive mechanism and to find the maximum speed waveform. The translation device is modeled as a semidefinite two-degree-of-freedom system. The motion analysis includes effects of friction force between moving mass and contact surface, dynamics of voltage amplifier and piezoelectric elements, and hysteresis of piezoelectric actuator. Base on the model, simulation studies are carried out and then compared with experimental results. It is found that the error between moving distances obtained by analysis and experiment is less than 15% and that the actual motion of moving mass is well predicted by the analytical work, finally, precision positioning experiments are carried out by using a proximity sensor as a feedback sensor. Position control of moving mass is initiated by the maximum speed waveform and finely tuned by the scaled down waveform so that accurate positioning is accomplished within the resolution of the sensor.

  • PDF

The Evaluation of Roadbed Stiffness using Continuous Surface-Wave (CSW) Method (연속 표면파(CSW)기법을 활용한 노반 강성평가에 관한 연구)

  • Ko Hak-Song;Joh Sung-Ho;Hwang Sun-Kun;Lee Il-Hwa
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.868-873
    • /
    • 2004
  • Recently, The surface-wave method has widely been used for the site investigation due to the economic advantage and the improved reliability. The typical surface-wave methods currently available are SASW method, MASW method and CSW method. The CSW method has a potential of high-quality measurement, but its inherent problems limited its use to the special cases such as the compaction-quality control. The CSW method uses the steady-state harmonic vibration for the seismic source as in the steady-state Rayleigh-wave method, which is superior to the impact source used for other methods. This study proposed a new procedure to solve the inherent problems of the CSW method and to improve the reliability of the CSW measurements. To verify the validity of the proposed in this study, the SASW results were compared with the CSW results for the numerical simulation of the CSW testing. Also, the feasibility of the proposed method was verified using the field measurements at a geotechnical site.

  • PDF

A study on the non-destructive characteristics of the composite structures using the Acoustic Emission (Acoustic Emission(AE)을 이용한 복합재료 구조물의 비파괴 특성 연구)

  • Lee Chang-Hun;Choi Jin-Ho;Kweon Jin-Hwe;Byun Jun-Hyung;Yu Yeun-Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.139-142
    • /
    • 2004
  • As fiber reinforced composite materials are widely used in aircraft, space structures and robot arms, the study on the non-destructive testing methods of the composite materials has become an important research area for improving their reliability and safety. In this paper, the AE signal analyzer with the resonance circuit to extract the specified frequency of the acoustic emission signal were designed and fabricated. The noise levels of the fabricated AE signal analyzer by the disturbance such as impact or mechanical vibration had a very small value comparable to those of the conventional AE signal analyzer. Also, the crack detection capabilities of the fabricated AE signal analyzer under the static and dynamic tensile test were evaluated and compared with the conventional AE signal analyzer.

  • PDF

A new bridge-vehicle system part I: Formulation and validation

  • Chan, Tommy H.T.;Yu, Ling;Yung, T.H.;Chan, Jeffrey H.F.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.1
    • /
    • pp.1-19
    • /
    • 2003
  • This paper presents the formulation of a new bridge-vehicle system with validation using the field data. Both pitching and twisting modes of the vehicle are considered in the contribution of the dynamic effects in the bridge responses. A heavy vehicle was hired as a control vehicle with known axle weight, axle spacing and spring coefficients. The measured responses were generated from the control vehicle running at a particular speed at a test span at Ma Tau Wai Flyover. The measured responses were acquired using strain gauges installed beneath the girder beams of the test bridge. The simulated responses were generated using BRVEAN that is a self-developed program based on the proposed bridge-vehicle system. The validation shows that the bridge model is valid for representing the test bridge and the governing equations are valid for representing the motion of moving vehicles.