• Title/Summary/Keyword: Impact tip

Search Result 105, Processing Time 0.023 seconds

Transient Spray Structures of Supersonic Liquid Jet Injected by Projectile Impact Systems (발사체 충격 방식을 사용한 초음속 액체 제트의 과도 분무 형상에 관한 연구)

  • Shin, Jeung-Hwan;Lee, In-Chul;Kim, Heuy-Dong;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.17 no.2
    • /
    • pp.86-93
    • /
    • 2012
  • The effects of projectile impact system on the transient spray characteristic which is supersonic liquid tip velocity were studied by experimentally. Supersonic liquid jets were generated by impact of a high speed projectile driven by a Two-stage light gas gun. A high speed camera and schlieren optical system were used to capture the spray structures of the supersonic liquid jets. In a case of nozzle assembly Type-A, expansion gases accelerate a projectile which has a mass of 6 grams from 250 m/s at the exit of the launch tube. Accelerated projectile collides with the liquid storage part, then supersonic liquid jets are injected with instantaneous spray tip velocity from 617.78 m/s to 982.54 m/s with various nozzle L/d. However, In a case of nozzle assembly Type-B which has a heavier projectile (60 grams) and lower impact velocity (182 m/s), an impact pressure was decreased. Thus the liquid jet injected at 210 m/s of the maximum velocity did not penetrate a shock wave and fast break-up was occurred. Pulsed injection of liquid column generated second shock wave and multiple shock wave.

The Test for Verifying a Tip-Over Analysis of a Dry Storage Cask (건식저장용기에 대한 전복해석의 검증시험)

  • Kim Dong-Hak;Seo Ki-Seog;Lee Ju-Chan;Cho Chun-Hyung;Jang Hyun-Kee;Choi Byung-Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.3
    • /
    • pp.245-253
    • /
    • 2006
  • A test of the 1/3 scale model was conducted to verify the tip-over analysis of a dry. concrete storage cask under a hypothetical accident condition. The tip-over analysis was executed using the velocity at each point as the initial conditions of the model just before the impact. The initial velocity was determined from the initial angular velocity, which would make the equivalent kinetic energy to the potential energy. To confirm the structural integrity of the canister, the visual testing and the non-detective testings such as Liquid Penetrant testing and Ultrasonic Testing were conducted. The lid of a storage cask was plastically deformed near the impact point. The structural integrity of storage cask was maintained. To verify the tip-over analysis the strains and the accelerations acquired by the tip-over test were compared with those by the analyses. The results of the analysis were larger than the test results about two times.

  • PDF

Improved dynamic model of the impact hammer (개선된 충격해머의 동역학적 모델)

  • Lim, Byoung-Duk;Park, Jung-Hyun;Heo, Joon-Hyeok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.372.1-372
    • /
    • 2002
  • Although impact hammer is widely used as a convenient excitation tool in structural modal testing, little is known about the dynamic charateristics of its impulse mechanism. Transmission of the impulsive force to the structure depends on the dynamic properties of the impact hammer as well as the stiffness of the tip. An improved dynamic model of the impact hammer is proposed in this study with numerical simulations based on this model. (omitted)

  • PDF

Yield mechanisms of stepped cantilevers subjected to a dynamically applied constant tip force

  • Wang, B.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.5
    • /
    • pp.445-462
    • /
    • 1995
  • Previous studies of a stepped cantilever with two straight segments under a suddenly applied constant force (a step load) applied at its tip have shown that the validity of deformation mechanisms is governed by certain geometrical restrictions. Single and double-hinge mechanisms have been proposed and it is shown in this paper that for a stepped cantilever with a stronger tip segment, i.e. $M_{0.1}$ > $M_{0.2}$, where $M_{0.1}$ and $M_{0.2}$ are the dynamic fully plastic bending moments of the tip and root segments, respectively, the family of possible yield mechanisms is expanded by introducing new double and triple-hinge mechanisms. With the aid of these mechanisms, it is shown that all initial deformations can be derived for a stepped cantilever regardless of its geometry and the magnitude of the dynamic force applied.

Experimental Study on Spray Etching Process In Micro Fabrication of Lead Frame

  • Jung, Ji-Won;Choi, Gyung-Min;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2294-2302
    • /
    • 2004
  • The objective of this study is to obtain detailed information for the micro fabrication of lead frames by applying spray technology to wet etching process. Wet etching experiments were performed with different etching parameters such as injection pressure, distance from nozzle tip to etched substrate, nozzle pitch and etchant temperature. The characteristics of single and twin spray were measured to investigate the correlation between the spray characteristics and the etching characteristics. Drop size and velocity were measured by Phase-Doppler Anemometer (PDA). Four liquids of different viscosity were used to reveal the effects of viscosity on the spray characteristics. The results indicated that the shorter the distance from nozzle tip and the nozzle pitch, the larger etching factor became. The average etching factor had good positive correlation with average axial velocity and impact force. It was found that the etching characteristics depended strongly on the spray characteristics.

Study on the Performance of a Centrifugal Compressor Using Fluid-Structure Interaction Method (유체-구조 연성해석을 이용한 원심압축기 운전익단간극과 성능 예측)

  • Lee, Horim;Kim, Changhee;Yang, Jangsik;Son, Changmin;Hwang, Yoonjei;Jeong, Jinhee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.357-363
    • /
    • 2016
  • In this study, we perform a series of aero-thermo-mechanical analyses to predict the running-tip clearance and the effects of impeller deformation on the performance using a centrifugal compressor. During operation, the impeller deformation due to a combination of the centrifugal force, aerodynamic pressure and the thermal load results in a non-uniform tip clearance profile. For the prediction, we employ the one-way fluid-structure interaction (FSI) method using CFX 14.5 and ANSYS. The predicted running tip clearance shows a non-uniform profile over the entire flow passage. In particular, a significant reduction of the tip clearance height occurred at the leading and trailing edges of the impeller. Because of the reduction of the tip clearance, the tip leakage flow decreased by 19.4%. In addition, the polytrophic efficiency under operating conditions increased by 0.72%. These findings confirm that the prediction of the running tip clearance and its impact on compressor performance is an important area that requires further investigation.

Study on the Effect of Pile Tip Shape on Driven Pile Behavior Using 3D Printers (3D 프린터를 이용한 선단 모양 변화에 따른 타입말뚝 거동 연구)

  • Kim, Dohyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.1
    • /
    • pp.27-38
    • /
    • 2023
  • In this study, the impact of pile tip geometry, including shape, size, and angle, on the drivability and stress concentration during pile driving was investigated using 3D printing technology and finite element numerical analysis. A series of field loading tests were conducted on a test pile with various pile tip conditions, including width, angle, and shape. The changes in settlement were quantified as a ratio to the settlement of a conventional pile tip case and large deformation finite element analysis was used to investigate the maximum stress on a pile tip and the location of possible damage during pile driving. The results showed that by modifying the shape, size, and angle of the pile tip, the drivability of the pile could be improved and the maximum stress concentration around the pile tip could be significantly reduced, thereby ensuring the structural integrity of the pile during pile driving.

Macroscopic Visualization of Diesel Sprays with respect to Nozzle Hole Numbers and Injection Angles (분공수와 분사각의 영향에 따른 거시적 디젤 분무 가시화)

  • Yongjin Jung;Jinyoung Jang;Choongsik Bae
    • Journal of ILASS-Korea
    • /
    • v.29 no.1
    • /
    • pp.32-37
    • /
    • 2024
  • Macroscopic visualization of non-evaporating sprays was experimentally conducted to investigate spray tip penetration and spray angle under low-density conditions, corresponding to an early injection strategy. Furthermore, injectors with varying injection angles (146° and 70°) and numbers of holes (8 and 14) were employed to examine the impact of injector configuration. Compared to the baseline injector, 8H146, which has 8 holes and a 146° injection angle, the spray tip penetration of the 8H70 injector was found to be longer. This can be attributed to higher momentum due to a smooth flow field between the sac volume and the nozzle inlet, which is located closer to the injector tip centerline. The increase in velocity led to intense turbulence generation, resulting in a wider spray angle. Conversely, the spray tip penetration of the 14H70 injector was shorter than that of the 8H70 injector. The competition between increased velocity and decreased nozzle diameter influenced the spray tip penetration for the 14H70 injector; the increase in momentum, previously observed for the 8H70 injector, contributed to an increase in spray tip penetration, but a decrease in nozzle diameter could lead to a reduction in spray tip penetration. The spray angle for the 14H70 injector was similar to that of the 8H146 injector. Moreover, injection rate measurements revealed that the slope for a narrow injection angle (70°) was steeper than that for a wider injection angle during the injection event.

A Study of Mixing Characteristics for Cosmetic Pine Powder (화장품용 미분체 혼합공정에서의 분산특성 연구)

  • 이종옥;송건응
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.19 no.1
    • /
    • pp.85-107
    • /
    • 1993
  • The cosmetic fine powders were mixed with variation of mixing time(5) in the mixers (ribbon mixer, powder mixer, micropulverizer and fine impact mill). The powders were nixed with small amount of ferric oxide. as tracer. The mixed powders ere measured the particle size distribution, specific surface area and surface color with mixing time (s). The color variation, particle size distribution and specific surface area of the mixed powder exist a relationship with mining time(s) that can be expressed as mathematical equations to show the degree of the mixing of the powder mixture. The linear velocity of the impellar tip is the main factor contributing to he mixing efficiency of the mixers un this study. According to the linear velocity, he mixers used are devieded as convection mixing (ribbon mixer), sclera mixing powder mixer) and diffusion mixing (micropulverizer/fine impact mill).

  • PDF

Development and Performance Evaluation of In-situ Dynamic Stiffness Analyzer (원위치 동적강성 분석기의 개발 및 성능평가)

  • Kim, Dong-Ju;Byun, Yong-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.2
    • /
    • pp.41-50
    • /
    • 2019
  • Stiffness characteristic of subgrade is one of the most important aspects for the design and evaluation of pavement and railway. However, adequate field testing methods for evaluating the stiffness characteristics of the subgrade have not been developed yet. In this study, an in-situ dynamic stiffness analyzer (IDSA) is developed to evaluate the characteristics of subgrade stiffness along the depth, and its performance is evaluated in elastic materials and a compacted soil. The IDSA consists of a falling hammer system, a connecting rod, and a tip module. Four strain gauges and an accelerometer are installed at the tip of the rod to analyze the dynamic response of the tip generated by the drop of hammer. Based on the Boussinesq's method, the stiffness and Young's modulus of the specimens can be calculated. The performance of IDSA was tested on three elastic materials with different hardness and a compacted soil. For the repeatability of test performance, the dynamic signals for force and displacement of the tip are averaged from the hammer impact tests performed five times at the same drop height. The experimental results show that the peak force, peak displacement, and the duration depend on the hardness of the elastic materials. After calculating the stiffness and elastic modulus, it is revealed that as the drop height of hammer increases, the stiffness and elastic moduli of MC nylon and the compacted soil rapidly increase, while those of urethanes less increase.