• Title/Summary/Keyword: Impact pressure

Search Result 1,536, Processing Time 0.029 seconds

Nursing outcomes of inpatient on level of nursing staffing in long term care hospitals (요양병원 간호인력 확보수준에 따른 입원환자의 간호결과)

  • Kim, Eun Hee;Lee, Eunjoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.715-727
    • /
    • 2015
  • This study was conducted to explore the impact of nursing staffing on inpatient nursing outcomes in long term care hospitals. A secondary analysis was done of national data from the Health Insurance Review and Assessment Services including evaluation of long term care hospitals. Patients per RN was a significant indicator of foley catheter ratio in high risk group and low risk group. Patients per RN&NA was a significant indicator of decline in ADL for patients with dementia, non dementia, urinary incontinence and new pressure ulcer development in the high risk group. The average nursing outcome of inpatient in high grade was higher than that low grade in long care hospital. This higher level of nursing staffing and the higher the grade shown a positive effect on the nursing outcomes of the inpatient. We therefore recommend modifying the above nurse staffing policy so as to make it more effective in improving nursing outcomes.

Development of a Sizing System and a Draping Pattern for Hip Protector based on 3D Data Analysis of Korean Older Women (한국 노인의 3D 인체특성 분석을 통한 Hip protector 치수체계 수립 및 입체패턴 설계)

  • Jeon, Eun-Jin;Park, Sei-Kwon;You, Hee-Cheon;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.18 no.1
    • /
    • pp.120-129
    • /
    • 2016
  • This study aimed to develop an optimal sizing system and a draping pattern for hip protector based on an analysis of anthropometric characteristics of Korean older women. A hip protector is a specialized form of pants or underwear containing pads along the outside of each hip. The 3D body scan data of Korean older women were analyzed to identify their anthropometric characteristics and a four-size system with 93% of population accommodation was developed by clustering analysis based on key dimensions derived from factor analysis. The sizing system consists of small/short, large/short, small/tall, and large/tall. A 3D physical model and hip pads were fabricated; then, a hip protector was draped on the 3D model and hip pads. The sizing system of hip protector was analyzed in terms of size and shape and a draping pattern was compared on back center, back side, front side, front center and pad. Lastly, the pattern deformation and clothing pressure were analyzed using the virtual clothing system CLO. Virtual system have disadvantage of not to suggest the objective value. In the future research the wearing comfort and impact absorption of the hip protector needs to be tested and then a hip protector design will be finalized by considering the hip protector's size, material, comfort testing results, aesthetic appeal, protection effectiveness, and practical utility of everyday use.

A Wave Propagation Analysis in the Layered Systems (적층계(積層係)를 통과하는 소성응력파(塑性應力波)의 전파(傳波))

  • Lee, Sang Ho;Ahn, Byoung Ki;Kang, Young Goo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.61-71
    • /
    • 1993
  • The stress waves generated by the mechanical energies by impact or the chemical energies by the explosions are transmitted through medium. The wave propagation process through medium is a very complicated procedure due to the reflections and refractions of the waves at the free surfaces and interfaces. In this study the pressure independent Von-Mises model is employed for the wave propagation analysis in the layered systems. Governing equations of this study are conservation equations of momentum and mass in Lagrangian coordinate system which is fixed to the material. Due to the shock-front which violates the continuity assumptions inherent in the differential equations numerical artificial viscosity is used to spread the shock front over several computational zones. These equations are solved by Finite Difference Method with discretized time and space coordinates. The associate normality flow rule as a plastic theory is implemented to find the plastic strains.

  • PDF

The Effect of Tai-Chi for Arthritis(TCA) Program in Osteoarthritis and Rheumatoid Arthritis Patients (골관절염환자와 류마티스관절염 환자에게 적용한 타이치 운동프로그램(TCA)의 효과 비교연구)

  • Lee, Hea-Young;Suh, Moon-Ja
    • Journal of muscle and joint health
    • /
    • v.10 no.2
    • /
    • pp.188-202
    • /
    • 2003
  • The aim of study was to investigate the effects of 12 forms of Sun-style Tai-Chi for arthritis(TCA) on physical symptom(pain, tenderness, swelling fatigue, and blood pressure), physical function(balance, flexibility, grip strength) and social-psychological health status in osteoarthritis(OA) patients and rheumatoid arthritis(RA) patients. This study was done with one group pretest-posttest design. A total 21 arthritis patients(6 OA patient and 15 RA patient) participated in 60 minute session consisting of warm-up exercise 12-main movement including qigong, and cool-down exercise twice a week for 6weeks. Physiological and social-psychological variables were measured before and after TCA 12 form. The researcher who completed a Tai Chi workshop for exercise leaders in Australia and Seoul taught the Tai Chi movement step by step until the patient felt comfort enough to perform them correctly by themselves during the first 4 weeks. At the last 2 weeks, the subject perform 10-15set of these at a session with traditional music to help patients move in a slow tempo. TCA 12 forms program showed significant improvement in fatigue(p=0.039) of rheumatoid arthritis patient and pain(p=0.006), fatigue(p=0.013), tenderness(p=0.032), flexibility(rt arm up, p=0.014, If arm up, P=0.003), grip strength(rt hand, p=0.002, If hand, P=0.003) of osteoarthritis patients. With assessment by Arthritis Impact Measurement Scale 2 questionnaire(AIMS2), physical component(0.002) and social interaction(0.025) on osteoarthritis patients were significantly improved. Evaluation of the participants about TCA exercise noted that the exercise was fairly easy(23.6%), moderately difficult(57.1%), and fairly difficult(14.3%). Considering the result of this study, TCA exercise program was more effective in pain, tenderness, grip strength, flexibility, and physical and social interaction on osteoarthritis patients than rheumatoid arthritis patients. Tai-Chi for arthritis 12 form was an appropriate intensity exercise for osteoarthritis patients.

  • PDF

Experimental Study of the Supersonic Free Jet Discharging from a Petal Nozzle (페탈노즐로부터 방출되는 초음속 자유제트에 관한 실험적 연구)

  • Lee, Jun-Hee;Kim, Jung-Bae;Gwak, Jong-Ho;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2133-2138
    • /
    • 2003
  • In general, flow entrainment of surrounding gas into a supersonic jet is caused by the pressure drop inside the jet and the shear actions between the jet and the surrounding gas. In the recent industrial applications, like supersonic ejector system or scramjet engine, the rapid mixing of two different gases is important in that it determines the whole performance of the flow system. However, the mixing performance of the conventional circular jet is very low because the shear actions are not enough. The supersonic jet discharging from a petal nozzle is known to enhance mixing effects with the surrounding gas because it produces strong longitudinal vortices due to the velocity differences from both the major and minor axes of petal nozzle. This study aims to enhance the mixing performance of the jet with surrounding gas by using the lobed petal nozzle. The jet flows from the petal nozzle are compared with those from the conventional circular nozzle. The petal nozzles employed are 4, 6, and 8 lobed shapes with a design Mach number of 1.7 each, and the circular nozzle has the same design Mach number. The pitot impact pressures are measured in detail to specify the jet flows. For flow visualization, the schlieren optical method is used. The experimental results reveal that the petal nozzle reduces the supersonic length of the supersonic jet, and leads to the improved mixing performance compared with the conventional circular jet.

  • PDF

Study on Enhancement for Interfacial Energy Release Rate of Adhesive Layer in Fiber Metal Laminates using Taguchi Method (다구찌 기법을 적용한 섬유금속적층판 접착층의 에너지 해방률 강화에 대한 연구)

  • Kil, Min-Gyu;Park, Eu-Tteum;Song, Woo-Jin;Kang, Beom-Soo
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.249-255
    • /
    • 2016
  • The fiber metal laminates have been widely used at aerospace industry due to outstanding fatigue characteristic, corrosion resistance and impact resistance and so forth. The objective of this research is to establish the proper manufacturing variables for enhancing the interfacial energy release rate of fiber metal laminates using Taguchi method. The major variables of the manufacturing process are surface treatment, pre-specified temperature holding time and additional pressure. In order to determine the interfacial adhesive strength, the double cantilever beam and end-notched flexure tests were conducted. Afterward, Mode I and II energy release rates at various conditions were introduced signal-to-noise ratio with respect to each condition. Finally, the most efficient manufacturing variables are recognized using larger-the-better characteristic.

Soft Tissue Reconstruction of Complete Circumferential Defects of the Upper Extremity

  • Ng, Zhi Yang;Tan, Shaun Shi Yan;Lellouch, Alexandre Gaston;Cetrulo, Curtis Lisante Jr;Chim, Harvey Wei Ming
    • Archives of Plastic Surgery
    • /
    • v.44 no.2
    • /
    • pp.117-123
    • /
    • 2017
  • Background Upper extremity soft tissue defects with complete circumferential involvement are not common. Coupled with the unique anatomy of the upper extremity, the underlying etiology of such circumferential soft tissue defects represent additional reconstructive challenges that require treatment to be tailored to both the patient and the wound. The aim of this study is to review the various options for soft tissue reconstruction of complete circumferential defects in the upper extremity. Methods A literature review of PubMed and MEDLINE up to December 2016 was performed. The current study focuses on forearm and arm defects from the level at or proximal to the wrist and were assessed based on Tajima's classification (J Trauma 1974). Data reviewed for analysis included patient demographics, causality, defect size, reconstructive technique(s) employed, and postoperative follow-up and functional outcomes (when available). Results In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, 14 unique articles were identified for a total of 50 patients (mean=28.1 years). Underlying etiologies varied from extensive thermal or electrical burns to high impact trauma leading to degloving or avulsion, crush injuries, or even occur iatrogenically after tumor extirpation or extensive debridement. Treatment options ranged from the application of negative pressure wound dressings to the opposite end of the spectrum in hand transplantation. Conclusions With the evolution of reconstructive techniques over time, the extent of functional and aesthetic rehabilitation of these complex upper extremity injuries has also improved. The proposed management algorithm comprehensively addresses the inherent challenges associated with these complex cases.

Study on the Performance of a Centrifugal Compressor Using Fluid-Structure Interaction Method (유체-구조 연성해석을 이용한 원심압축기 운전익단간극과 성능 예측)

  • Lee, Horim;Kim, Changhee;Yang, Jangsik;Son, Changmin;Hwang, Yoonjei;Jeong, Jinhee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.357-363
    • /
    • 2016
  • In this study, we perform a series of aero-thermo-mechanical analyses to predict the running-tip clearance and the effects of impeller deformation on the performance using a centrifugal compressor. During operation, the impeller deformation due to a combination of the centrifugal force, aerodynamic pressure and the thermal load results in a non-uniform tip clearance profile. For the prediction, we employ the one-way fluid-structure interaction (FSI) method using CFX 14.5 and ANSYS. The predicted running tip clearance shows a non-uniform profile over the entire flow passage. In particular, a significant reduction of the tip clearance height occurred at the leading and trailing edges of the impeller. Because of the reduction of the tip clearance, the tip leakage flow decreased by 19.4%. In addition, the polytrophic efficiency under operating conditions increased by 0.72%. These findings confirm that the prediction of the running tip clearance and its impact on compressor performance is an important area that requires further investigation.

Effects of Water Cavitation Peening on Cavitation Characteristics of 5000 Series Al Alloys (5000계열 Al 합금의 캐비테이션 특성에 관한 워터 캐비테이션 피닝의 영향)

  • Kim, Seong-Jong;Hyun, Koang-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.5
    • /
    • pp.481-487
    • /
    • 2012
  • Recently, the construction of the small Al alloy ships is an increasing trend in viewpoint such as the disposal issue of a retired ship, the enhancement of environmental regulation and resources recycling etc. for FRP ships. However, Al alloy ship which can achieve high speed by light weight in marine environment is exposed to a problem on materials damage by cavitation-erosion which is generated by large impact pressure with the collapse of air bubbles due to cavitation. Consequently, in this study, water cavitation peening technology was applied in Al alloy for ship to enhance durability life by preventing cavitation damage. So, the water cavitaton peening application time that presented the excellent cavitation characteristic investigated. The weight-loss of 5456-H116, 5083-H321 and 5052-O Al alloy at the optimum water cavitation peening time were improved to 42.11 %, 50.0 % and 25.7 %, respectively.

Acoustic responses of natural fibre reinforced nanocomposite structure using multiphysics approach and experimental validation

  • Satankar, Rajesh Kumar;Sharma, Nitin;Ramteke, Prashik Malhari;Panda, Subtra Kumar;Mahapatra, Siba Shankar
    • Advances in nano research
    • /
    • v.9 no.4
    • /
    • pp.263-276
    • /
    • 2020
  • In this article, the acoustic responses of free vibrated natural fibre-reinforced polymer nanocomposite structure have been investigated first time with the help of commercial package (ANSYS) using the multiphysical modelling approach. The sound relevant data of the polymeric structure is obtained by varying weight fractions of the natural nanofibre within the composite. Firstly, the structural frequencies are obtained through a simulation model prepared in ANSYS and solved through the static structural analysis module. Further, the corresponding sound data within a certain range of frequencies are evaluated by modelling the medium through the boundary element steps with adequate coupling between structure and fluid via LMS Virtual Lab. The simulation model validity has been established by comparing the frequency and sound responses with published results. In addition, sets of experimentation are carried out for the eigenvalue and the sound pressure level for different weight fractions of natural fibre and compared with own simulation data. The experimental frequencies are obtained using own impact type vibration analyzer and recorded through LABVIEW support software. Similarly, the noise data due to the harmonically excited vibrating plate are recorded through the available Array microphone (40 PH and serial no: 190569). The numerical results and subsequent experimental comparison are indicating the comprehensiveness of the presently derived simulation model. Finally, the effects of structural design parameters (thickness ratio, aspect ratio and boundary conditions) on the acoustic behaviour of the natural-fibre reinforced nanocomposite are computed using the present multiphysical model and highlighted the inferences.