• 제목/요약/키워드: Impact power

검색결과 2,227건 처리시간 0.03초

Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part I: Model test

  • Li, Z.R.;Li, Z.C.;Dong, Z.F.;Huang, T.;Lu, Y.G.;Rong, J.L.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.3068-3084
    • /
    • 2021
  • Investigations of large commercial aircraft impact effect on nuclear power plant (NPP) buildings have been drawing extensive attentions, particularly after the 9/11 event, and this paper aims to experimentally assess the damage and vibrations of NPP buildings subjected to aircraft crash. In present Part I, two shots of reduce-scaled model test of aircraft impacting on NPP building were carried out. Firstly, the 1:15 aircraft model (weighs 135 kg) and RC NPP model (weighs about 70 t) are designed and prepared. Then, based on the large rocket sled loading test platform, the aircraft models were accelerated to impact perpendicularly on the two sides of NPP model, i.e., containment and auxiliary buildings, with a velocity of about 170 m/s. The strain-time histories of rebars within the impact area and acceleration-time histories of each floor of NPP model are derived from the pre-arranged twenty-one strain gauges and twenty tri-axial accelerometers, and the whole impact processes were recorded by three high-speed cameras. The local penetration and perforation failure modes occurred respectively in the collision scenarios of containment and auxiliary buildings, and some suggestions for the NPP design are given. The maximum acceleration in the 1:15 scaled tests is 1785.73 g, and thus the corresponding maximum resultant acceleration in a prototype impact might be about 119 g, which poses a potential threat to the nuclear equipment. Furthermore, it was found that the nonlinear decrease of vibrations along the height was well reflected by the variations of both the maximum resultant vibrations and Cumulative Absolute Velocity (CAV). The present experimental work on the damage and dynamic responses of NPP structure under aircraft impact is firstly presented, which could provide a benchmark basis for further safety assessments of prototype NPP structure as well as inner systems and components against aircraft crash.

Quantitative Evaluation of the Impact of Low-Voltage Loads Due to the Successive Voltage Sags (연속적인 순간전압강하에 의한 저압 부하의 정량적 영향 평가)

  • Moon Jong-Fil;Kim Jae-Chul;Yun Sang-Yun;Kang Bong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • 제53권12호
    • /
    • pp.678-684
    • /
    • 2004
  • Automatic reclosing is a typical protection method in power distribution systems for clearing the temporary faults. However, it has a fatal weakness in regards to voltage sags because it produces successive voltage sags. In this paper, we explored successive impact of voltage sag due to the automatic reclosing of power distribution systems. The actual tests of low voltage loads were accomplished for obtaining the susceptibility of voltage sags. The final results of the test yielded power acceptability curves of voltage sag, and the curves were transformed the 3-dimensional CBEMA(Computer Business Equipment Manufacturer Association) format. For the quantitative evaluation of the impact of successive voltage sags, an assessment formulation using the voltage sag contour was proposed. The proposed formulation was tested by using the voltage sag contour data of IEEE standard and the results of the test. Through the case studies, we verified that the proposed method can be effectively used to evaluate the actual impact of successive voltage sans.

Hail Impact Analysis of Photovoltaic Module using IEC Test (IEC 우박시험에 대한 태양광모듈 충돌 해석)

  • Park, Jung-Jae;Park, Chi-Yong;Ryu, Jae-Woong
    • Journal of the Korean Solar Energy Society
    • /
    • 제40권4호
    • /
    • pp.23-33
    • /
    • 2020
  • The loss in photovoltaic power due to hailstorms has been highlighted as a major issue in the sustained growth of the PV power plant industry. This study investigates the safety of a solar module by conducting a numerical analysis of a hail test according to the IEC 61215 standard. Our study aims to elucidate the detailed behavior between the ice and solar modules and the micro-cracks forming on solar modules during hailstorms. To analyze the impact of hail, we used the ANSYS AUTODYN software to evaluate the impact characteristics on a solar module with different front glass thicknesses. The simulations show that a solar module with a glass thickness of 4.0 mm results in excellent durability against hail. The results indicate the feasibility of using simulations to analyze and predict micro-cracks on solar modules tailored to various conditions, which can be used to develop new solar modules.

Management in the EPC Business for Overseas Power Plant Projects (해외 발전플랜트 EPC 사업의 리스크 분석 및 관리방안)

  • Park, Euiseung;Yoo, Hoseon;Lee, Jae-Heon
    • Plant Journal
    • /
    • 제7권3호
    • /
    • pp.48-64
    • /
    • 2011
  • In this work, risks in EPC project for overseas power plant projects are analyzed and risk management methods are suggested to reduce cost and to shorten time. 79% of risks occurred in the engineering phase for S project located in South-East Asia. The impact scales of risks on major project objectives which are cost, time, scope, and quality are analyzed as 3.5, 3.8, 2.7, and 3.7, respectively. The level of impact scales is very similar to each other except the impact scale of scope. The risk management methods suggested in this study have to be applied at the appropriate time to manage risks effectively. After that, risks are managed continuously by monitoring.

  • PDF

Comparing Impact of STATCOM and SSSC on the Performance of Digital Distance Relay

  • Ghorbani, Amir
    • Journal of Power Electronics
    • /
    • 제11권6호
    • /
    • pp.890-896
    • /
    • 2011
  • In this paper the impact of a SSSC and a STATCOM on the impedance calculated by a distance relay is investigated. Both analytical analysis and simulations are provided. The STATCOM/SSSC control systems are modeled in detail. It is demonstrated that a SSSC has a greater impact on the calculated impedance by an A-G distance relay element. Several scenarios are considered in the simulations like the impact of the fault conditions, the compensator settings, the power system conditions and so on. All the simulations are carried out in MATLAB/Simulink with detailed models of the SSSC and the STATCOM.

Analysis of Economical efficiency for renewable energy in Steam Power Plant (신재생에너지 적용에 따른 화력발전 경제성분석)

  • Choi, Kyoung-Sik
    • Journal of Environmental Impact Assessment
    • /
    • 제23권1호
    • /
    • pp.11-17
    • /
    • 2014
  • Since the Renewable Portfolio Standard (RPS) would be started in 2012, the use of renewable energy should be 11% of total energy use including bio-fuel in 2030. The economic efficiency for renewable energy in B power plant was considered with the bio-diesel, wind power and solar power. The Net Present Value (NPV) and Benefit/Cost Ratio(BC) were used for the economic efficiency with the cost and benefit analysis. In case of bio-diesel, the cost resulted from the fuel conversion and the benefit would be created with trade and environmental improvement. With regard to wind power and solar power, the construction cost would be required and benefit factors would be same as the bio-diesel. The wind power was the best of economic efficiency of renewable energy as the results of NPV and BC ratio. Whereas, the market of wind power was very popular and the techniques of wind power has been developing rapidly.

Improvement Plan of Ocean Physics Assessment Technique for Power Plant Thermal Effluent (발전소 온배수에 의한 해양물리학적 평가기법 개선방안 연구)

  • Kim, Myeong-Won;Jo, Gwang-Woo;Maeng, Jun-Ho;Kang, Tae-Soon;Kim, Jongkyu
    • Journal of Ocean Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.245-253
    • /
    • 2014
  • This research analyzed the current situation and problems with an environmental impact assessment to provide a rational ocean physics assessment technique for power plant thermal effluent. This research also tried to create an improvement plan for heated effluent diffusion impact assessment by examining the reporting regulations for environmental impact assessment, national and international evaluation guidelines, etc. In the case of evaluating the oceanographic impact of heated effluent discharged from power plants, a pre-investigation is necessary before a full-scale presentence investigation, to accurately predict and minimize power plant construction effects on the surrounding environments. Before this presentence investigation, moreover, an integrated presentence plan, which agrees with the business plan, effect prediction, and post-investigation, needs to be established. A sufficient summit investigation must be made, which considers climate changes, and new and additional power plant construction. For accurate long-term oceanic environmental change prediction, the credibility of effect prediction must be elevated by presenting an evaluation method that is categorized by numerical organization models, verification methods, result presentation, and other things. Furthermore, unproductive conflicts between the people involved in heated effluent evaluation should be reduced by these improvement plans.

The Power of Power Law: A View from VoD Service

  • Lee, Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제38B권8호
    • /
    • pp.607-614
    • /
    • 2013
  • In this work we investigate the power of power law in the VoD service over IP network. Especially, we show that the power of power law is strong in the location of the contents storage for the VoD service and its impact on the link dimensioning. This work first shows the instance of the power law in the popularity of the video contents from the real data for the IPTV service. After that we propose an analytic model that characterizes the behavior of customers in accessing the video servers as well as the power law in the viewing pattern. Finally, we show the impact of the power law by proposing a model for the cost as well as link dimensioning. Via numerical experiment we show the implication of the proposition.

Harmonic Impact Studies of Grid-Connected Wind Power and PV Generation Systems (계통연계 풍력 및 태양광발전시스템 고조파 영향 검토)

  • Lee, Sang-Min;Jung, Hyong-Mo;Yu, Gwon-Jong;Lee, Kang-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제58권11호
    • /
    • pp.2185-2191
    • /
    • 2009
  • Wind power and photovoltaic(PV) generation systems are the fastest growing sources of renewable energy. The nonlinear devices, such as power electronic converter or inverter, of wind power and PV generation systems are the source of harmonics in power systems. The harmonic-related problems can have significant detrimental effects in the power system, such as capacitor heating, data communication interference, rotating equipment heating, transformer heating, relay misoperation and switchgear failure. There is a greater need for harmonic analysis that can properly maintain the power quality. By measuring harmonics of existing wind power and PV generation systems as harmonics modeling, the studies were made to see the harmonic impact of grid-connected wind power and PV generation systems.

Exposure limits of Magnetic fields of High Voltage Transmission lines for Evaluation of Environmental Impact (고압선로 환경영향평가의 자기장 노출범위설정에 관한 연구)

  • Jeon, In-Soo
    • Journal of Environmental Impact Assessment
    • /
    • 제13권5호
    • /
    • pp.243-250
    • /
    • 2004
  • Recently, concerns about health risks exposed to electromagnetic fields have been brought in the safety of electric power lines. A number of governmental and international organizations have advised to avoid the magnetic field exposure to the schools and residential areas. Some epidemiologic studies showed that electromagnetic fields should not exceed the exposure limits of 2-3mG to the people living near high-voltage transmission lines. In this study, the principles, ranges and survey methods of the assessment for powerfrequency electromagnetic fields were reviewed from the relevant research papers and documents. The ranges of electromagnetic fields were determined from 50m to 100m and have been defined according to the properties of each electric power lines and a new methodology was suggested in this study. It would be necessary to develop and improve specific assessment methods for various high-voltage transmission lines projects.