• 제목/요약/키워드: Impact diameter

검색결과 458건 처리시간 0.028초

GEOTECHNICAL DESIGNS OF THE SHIP IMPACT PROTECTION SYSTEM FOR INCHEON BRIDGE

  • Choi, Sung-Min;Oh, Seung-Tak;Park, Sang-Il;Kim, Sung-Hwan
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회 3차
    • /
    • pp.72-77
    • /
    • 2010
  • The Incheon Bridge, which was opened to the traffic in October 2009, is an 18.4 km long sea-crossing bridge connecting the Incheon International Airport with the expressway networks around the Seoul metropolitan area by way of Songdo District of Incheon City. This bridge is an integration of several special featured bridges and the major part of the bridge consists of cable-stayed spans. This marine cable-stayed bridge has a main span of 800 m wide to cross the vessel navigation channel in and out of the Incheon Port. In waterways where ship collision is anticipated, bridges shall be designed to resist ship impact forces, and/or, adequately protected by ship impact protection (SIP) systems. For the Incheon Bridge, large diameter circular dolphins as SIP were made at 44 locations of the both side of the main span around the piers of the cable-stayed bridge span. This world's largest dolphin-type SIP system protects the bridge against the collision with 100,000 DWT tanker navigating the channel with speed of 10 knots. Diameter of the dolphin is up to 25 m. Vessel collision risk was assessed by probability based analysis with AASHTO Method-II. The annual frequency of bridge collapse through the risk analysis for 71,370 cases of the impact scenario was less than $0.5{\times}10^{-4}$ and satisfies design requirements. The dolphin is the circular sheet pile structure filled with crushed rock and closed at the top with a robust concrete cap. The structural design was performed with numerical analyses of which constitutional model was verified by the physical model experiment using the geo-centrifugal testing equipment. 3D non-linear finite element models were used to analyze the structural response and energy-dissipating capability of dolphins which were deeply embedded in the seabed. The dolphin structure secures external stability and internal stability for ordinary loads such as wave and current pressure. Considering failure mechanism, stability assessment was performed for the strength limit state and service limit state of the dolphins. The friction angle of the crushed stone as a filling material was reduced to $38^{\circ}$ considering the possibility of contracting behavior as the impact.

  • PDF

중공트랙단면 에코필라 사방댐의 비선형 충돌해석 (Nonlinear Impact Analysis for Eco-Pillar Debris Barrier with Hollow Cross-Section)

  • 김현기;김범준
    • 한국산학기술학회논문지
    • /
    • 제20권7호
    • /
    • pp.430-439
    • /
    • 2019
  • 본 연구는 친환경 에코필라 사방댐의 시공성과 경제성을 향상시키기 위해 제안된 중공트랙형 단면의 프리캐스트 에코필라 사방댐에 대하여 산사태 발생시 토석류에 동반되는 암석이 충돌할 경우 구조체의 안전성과 손상도를 평가하기 위해 비선형 충돌해석을 수행하였다. 최근에는 콘크리트를 이용한 에코필라 사방댐의 설치가 늘고 있으나, 콘크리트 투과형 사방댐 설계의 기준이 전무하여 경험적으로 설계되고 있을 뿐 아니라 산사태로 인한 피해가 지속적으로 늘고 있는 상황임에도 불구하고 극한환경을 적용한 성능평가나 연구를 찾아보기 어렵다. 따라서 본 연구에서는 선행연구를 통해 적정성과 성능에 대해 검증된 중공트랙형 단면의 에코필라 사방댐에 대하여 급경사지에서 발생한 우면산 산사태의 토석류 속도로 암석이 충돌할 경우로 가정하였다. 암석의 규모는 ETAG 27의 성능평가 기준을 참조하여 유사한 규모로 설정하였고, 최대 충격력이 작용할 수 있는 조건과 작용위치, 암석직경을 변수로 고려하였으며, 콘크리트 비선형 재료모델을 적용하였다. 재료 비선형해석이 가능한 ABAQUS 소프트웨어를 이용하여 해석적 방법으로 구조체의 강도와 손상도 평가를 수행하였다. 해석결과, 암석직경 0.3m와 0.5m가 충돌했을 경우는 구조체의 변위나 응력이 허용치 이내로 안전한 것으로 평가 되었으나, 0.7m 직경의 암석이 충돌할 경우 중공트랙형 기둥부가 에너지를 충분히 흡수하지 못하여 파괴되는 것으로 예측되었다. 또한, 콘크리트 손상도 평가결과 암석직경 0.3m와 0.5m에서는 손상비가 1.0이하로 나타났으나 0.7m 직경일 경우는 1.39로 평가되어 일정수준 이상에서는 사방댐 기능수행 적합성이 제고되어야 할 것으로 판단된다. 본 연구 결과는 사방댐 단면설계 시 고려해야 할 충격력에 대한 기초자료로 활용할 수 있으며, 향후 실험적 연구가 추가적으로 필요할 것으로 판단된다.

충격 손상을 받은 항공기용 복합재료의 압축잔류강도 평가 (Evaluation of Compressive Residual Strength in Composite Material Under Impact Damage)

  • 안상수;홍석우;구재민;석창성
    • 대한기계학회논문집A
    • /
    • 제37권4호
    • /
    • pp.503-509
    • /
    • 2013
  • 탄소섬유강화 복합재료는 일반적으로 압축하중과 재료의 면에 수직한 방향의 충격에 매우 취약하다는 단점을 가지고 있다. 특히 항공기의 운항 중 조류와의 충돌이나 정비 중 공구의 낙하로 인한 충격손상은 항공기 구조물의 강도저하의 원인이 된다. 따라서 본 연구에서는 복합재료(CFRP) 시험편에 충격에너지와 충격자 직경을 변화시키면서 충격손상을 가한 후 압축시험을 수행하여 충격후 압축잔류강도를 평가하였으며, 시험 결과를 비교하여 충격에너지에 따른 충격후 압축잔류강도 예측식을 제안하였다.

현장시험에 의한 충격반향기법의 말뚝 건전도 검사 적용성 평가 (Verifications of the Impact-echo Technique for Integrity Evaluations of the Drilled Shaft using Full Scale Tests)

  • 정경자;조성민;김홍종;정종홍
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.33-40
    • /
    • 2005
  • Impact-echo test, a kind of simple and economical method to evaluate the integrity of drilled piles has some limitations to use because the stress wave can be generated only on the head of a pile and the wave propagation in the pile with surrounding soils are very complicated. Numerical analyses and model tests in the laboratory have shown that both the ratio of length to diameter of a pile and the stiffness ratio of pile to soil have influence on the resolution of testing results. Full scale testing piles which have artificial defects were used to verify the capability of impact-echo technique as a tool for the pile integrity evaluation. Behaviour of the reflected signal of stress wave was investigated according to the type of defects. Elastic modulus of the pile was calculated using the wave velocity in the pile and the unconfined strength of concrete specimen. Influences of the stiffness difference between the pile and the ground on the characteristics of a wave signal were also examined.

  • PDF

고속충격에 의한 A1 5052-H34 합금의 관통거동에 관한 연구 (A Study on perforation behavior of Aluminum 5052-H34 alloy by high velocity impact)

  • 손세원;이두성;홍성희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.174-179
    • /
    • 2001
  • In order to investigate the fracture behaviors(perforation modes) and resistance to perforation during ballistic impact of aluminum alloy plate, ballistic tests were conducted. Depth of penetration experiments with 5.56mm-diameter ball projectile launched into 25mm-thickness Al 5052-H34 targets were conducted. A powder gun launched the 3.55g projectiles at striking velocities between 0.6 and 1.0 km/s. radiography of the damaged targets showed different penetration modes as striking velocities increased. Resistance to perforation is determined by the protection ballistic limit($V_{50}$), a statistical velocity with 50% probability for complete perforation. Fracture behaviors and ballistic tolerance, described by perforation modes, are respectfully observed at and above ballistic limit velocities, as a result of $V_{50}$ test and Projectile Through Plates (PTP) test methods. PTP tests were conducted with $0^{\circ}$ obliquity at room temperature using 5.56mm ball projectile. $V_{50}$ tests with $0^{\circ}$ obliquity at room temperature were conducted with projectiles that were able to achieve near or complete perforation during PTP tests. The effect of various impact velocity are studied with depth of penetration.

  • PDF

산업용 에칭노즐을 이용한 Invar합금판의 식각에 분사각과 압력이 미치는 영향 (The Effect of Injection Angle and Pressure on Etch of Invar Plate Using Industrial Etch-Nozzle)

  • 정흥철;김동욱;최경민;김덕줄
    • 한국정밀공학회지
    • /
    • 제23권8호
    • /
    • pp.47-53
    • /
    • 2006
  • The purpose of this study was to investigate the significant characteristics in spray of industrial etch-nozzle for the design of process. The experiment was carried out with different spray pressure and industrial nozzle in wet etch. The characteristics of liquid spray, such as axial velocity and sauter mean diameter measurements were obtained by PDA. And impact force was calculated from spray characteristics. It was found that the fluid with higher spray pressure resulted in the smaller SMD and the higher droplet velocity and impact force. The depth of etch was increased in case of high spray pressure. In the case of injection angle oscillated between $20^{\circ}$, the result indicated constant effect of etch. The correlation between the spray characteristics and etch ones were analyzed. The depth of etch had good positive correlation with axial velocity and impact force. The result clearly shows that the characteristics in wet etch are strongly related to the spray characteristics with process.

Distribution Characteristics of Dust and Heavy Metals in the Atmosphere Around the Steel Industrial Complex

  • Hye-jin Jo;Jong-Ho Kim;Byung-Hyun Shon
    • International Journal of Advanced Culture Technology
    • /
    • 제12권2호
    • /
    • pp.334-344
    • /
    • 2024
  • In Dangjin, Chungcheongnam-do, there are not only power plants and large steel complexes, but also small and medium-sized air pollutant emission facilities. The dust generated by these facilities has a very small particle size and a large surface area due to condensation and physical and chemical reactions, and is discharged containing various harmful substances. Therefore, this study analyzed the distribution of particulate matter and heavy metal concentrations by particle size in the vicinity of the steel complex, residential area, and reference point using an eight-stage Cascade Impactor. Overall, the direct impact sites with a short distance from the steel complex had the highest concentration, followed by the indirect impact sites, and the non-impact sites had the lowest concentration, indicating that they are directly affected by the steel complex. The atmospheric dust concentration distribution showed a bimodal distribution with a minimum value around the 1.1 to 2.1 ㎛ particle diameter. However, during the yellow dust event, the maximum concentration was biased toward coarse particles. The proportion of PM2.5 in the dust tended to be higher in winter, while the ratio between PM2.5 and PM10 was relatively higher in spring. Regardless of the location of the impact point, heavy metals in the dust were dominated by iron and aluminum, followed by zinc, lead, and manganese.

Optimization and investigations of low-velocity bending impact of thin-walled beams

  • Hossein Taghipoor;Mahdi Sefidi
    • Steel and Composite Structures
    • /
    • 제50권2호
    • /
    • pp.159-181
    • /
    • 2024
  • In the present study, the effect of geometrical parameters of two different types of aluminum thin-walled structures on energy absorption under three-bending impact loading has been investigated experimentally and numerically. To evaluate the effect of parameters on the specific energy absorption (SEA), initial peak crushing force (IPCF), and the maximum crushing distance (δ), a design of experiment technique (DOE) with response surface method (RSM) was applied. Four different thin-walled structures have been tested under the low-velocity impact, and then they have simulated by ABAQUS software. An acceptable consistency between the numerical and experimental results was obtained. In this study, statistical analysis has been performed on various parameters of three different types of tubes. In the first and the second statistical analysis, the dimensional parameters of the cross-section, the number of holes, and the dimensional parameter of holes were considered as the design variables. The diameter reduction rate and the number of sections with different diameters are related to the third statistical analysis. All design points of the statistical method have been simulated by the finite element package, ABAQUS/Explicit. The final result shows that the height and thickness of tubes were more effective than other geometrical parameters, and despite the fact that the deformations of the cylindrical tubes were around forty percent greater than the rectangular tubes, the top desirability was relevant to the cylindrical tubes with reduced cross-sections.

Effect of Fiber Friction, Yarn Twist, and Splicing Air Pressure on Yarn Splicing Performance

  • Das A.;Ishtiaque S. M.;Parida Jyoti R.
    • Fibers and Polymers
    • /
    • 제6권1호
    • /
    • pp.72-78
    • /
    • 2005
  • The impact of fiber friction, yarn twist, and splicing air pressure on mechanical and structural properties of spliced portion have been reported in the present paper. The mechanical properties include the tensile and bending related properties and, in the structural properties, the diameter and packing density of the splices are studied. A three variable three level facto­rial design approach proposed by Box and Behnken has been used to design the experiment. The results indicate that there is a strong correlation between retained spliced strength (RSS) and retained splice elongation (RSE) with all the experimental variables. It has been observed that RSS increases with the increase in splice air pressure and after certain level it drops, whereas it consistently increases with the increase in yarn twist. The RSE increases with the increase in both fiber friction and yarn twist. It has also been observed that the yarn twist and splicing air pressure have significant influence on splice diameter, percent increase in diameter and retained packing coefficient, but the fiber friction has negligible influence on these parame­ters. Yarn twist and splicing air pressure has a strong correlation with splice flexural rigidity, where as poor correlation with retained flexural rigidity.

가압 펌프장에서 설계인자들이 수격에 의한 압력변동에 미치는 영향 (Effect of Design Factors in a Pump Station on Pressure Variations by Water Hammering)

  • 박종훈;성재용
    • 한국지열·수열에너지학회논문집
    • /
    • 제17권4호
    • /
    • pp.15-27
    • /
    • 2021
  • In this study, the effect of design factors in a pump station on the pressure variations which are the main cause of water hammering has been investigated by numerical simulations. As design factors, the flow rate, Young's modulus, diameter, thickness, roughness coefficient of pipeline are considered. The relationships between the pressure variations and the design factors are analyzed. The results show that the pressure variation increases sensitively with the flow rate and Young's modulus, and increases gradually with the thickness and roughness coefficient of pipe, whereas it decreases with the pipe diameter. The wavelength of the pressure wave becomes longer for a smaller Young's modulus, a smaller pipe thickness and a bigger pipe diameter. These relationships are nondimensionalized, and logarithmic curve-fitted functions are proposed by regression analysis. Most effective factors on the nondimensional pressure variation is Young's modulus. Flow rate, roughness coefficient, relative thickness and pipe diameters are the next impact factors.