• 제목/요약/키워드: Impact collapse

검색결과 207건 처리시간 0.023초

경량화용 박육부재의 형상비가 압궤특성에 미치는 영향 (Influence of dimensional ratio on collapse characteristics for the thin-walled structures of light weight)

  • 정종안;김정호;양인영
    • 한국안전학회지
    • /
    • 제13권3호
    • /
    • pp.11-23
    • /
    • 1998
  • In this study, collapse test of thin-walled structure is performed under axially quasi-static and impact load in collapse characteristic to develop the optimum structural member for a light-oriented automobile. Furthermore, the energy-absorbing capacity is observed according to the variety of configuration(circular, square), aspect ratio in aluminum specimen to obtain basic data for the improved member of vehicle. In both quasi-static and impact collapse test, Al circular specimens collapse, in general, with axisymmetric mode in case of thin thickness while collapse with non-axisynmetric mode according to the thickness increase. For Al rectangular specimens, they collapse with axisymmetric mode in case of thin thickness, with mixed collapse mode according to the increase of thickness. In terms of initial max. load, Al square specimen turns out the best member among specimens, and then Al square, circular and circular with large scaling ratio, respectively. In case of quasi-static compression test, the absorbed energy per unit volume and mass shows higher in Al circular specimen, and then Al square, circular with large scaling ratio, respectively, according to shape ratio the absorbed energy per unit volume and mass in case of max. impact compression load is higher than that of static load. But the absorbed energy per unit volume and mass shows that Al circular specimen is the best member. Especially, unlike max. compression loan, the absorbed energy per unit volume and mass in impact test turns out the low value.

  • PDF

Plastic collapse of tapered, tip-loaded cantilevered beams

  • Wilson, James F.;El-Esnawy, Nayer A.
    • Structural Engineering and Mechanics
    • /
    • 제9권6호
    • /
    • pp.569-588
    • /
    • 2000
  • The plastic collapse loads and their locations are predicted for a class of tapered, initially curved, and transversely corrugated cantilevered beams subjected to static tip loading. Results of both closed form and finite element solutions for several rigid perfectly plastic and elastic perfectly plastic beam models are evaluated. The governing equations are cast in nondimensional form for efficient studies of collapse load as it varies with beam geometry and the angle of the tip load. Static experiments for laboratory-scale configurations whose taper flared toward the tip, complemented the theory in that collapse occurred at points about 40% of the beams length from the fixed end. Experiments for low speed impact loading of these configurations showed that collapse occurred further from the fixed end, between the 61% and 71% points. The results may be applied to the design of safer highway guardrail terminal systems that collapse by design under vehicle impact.

선저슬래밍 충격횡압력을 받는 선체 판부재의 붕괴강도 특성에 관한 연구 (A Study on the Collapse Strength Characteristics of Ship Bottom Plating Subject to Slamming Induced Impact Lateral Pressure Loads)

  • 백점기;정장영;백영민
    • 대한조선학회논문집
    • /
    • 제36권2호
    • /
    • pp.77-93
    • /
    • 1999
  • 본 연구에서는 충격횡압력을 받는 선체 판부재의 붕괴강도 특성을 분석하고 충격하중 효과를 고려한 간이 구조설계식을 제시하고자 한다. 충격횡압력하에 판부재의 붕괴거동을 분석하기 위해 기존의 실험결과와 더불어 범용 비선형 유한요소해석 프로그램인 STARDYNE을 이용하였다. 이론적 방법으로는 먼저 강소성이론을 이용하여 정적 횡압력을 받는 판부재에 대한 붕괴강도식을 도출하였다. 또한, 변형률속도 효과를 고려하여 충격 횡압력 문제에도 적용하였다. 실제 판부재에 적용 예로써 충격횡압력을 받는 강판부재와 알루미늄합금 보강판부재에 대한 붕괴거동을 분석하였다.

  • PDF

최적 충격특성에 갖는 차체구조용 점용접 박육단면부재의 개발 -충격속도변화에 따른 압궤특성을 중심으로- (Development of Vehicle Members with Spot Welded Thin-wall Section for Optimum Impart Characteristic -Based on Collapse Characteristics on the Varied Impact Velocities-)

  • 양인영;차천석;강종엽
    • 대한기계학회논문집A
    • /
    • 제25권7호
    • /
    • pp.1131-1138
    • /
    • 2001
  • This paper concerns the crashworthiness of the widely used vehicle structure, the spot welded hat and double hat shaped section members, which are excellent on the point of the energy absorbing capacity and low production cost. The target of this paper is to analyze the energy absorption capacity of the structure against the front-end collision, and to obtain useful information for designing stage. Changing the spot weld pitches on the flanges, the hat and double hat shaped section members were tested on the axial collapse loads in impact velocities of 4.72m/sec, 6.54m/sec, 7.19m/sec and 7.27m/sec. To efficiently review the collapse characteristics of these sections, the simulation have been carried out using explicit FEM package, LS-DYNA3D. The solutions are compared with results from the impact collapse experiments.

고온 고습하에서 CFRP 적층 원통부재의 충격 압궤특성 (A study on impact collapse characteristics of CFRP thin-walled laminates under high temperatures and hygrothermals)

  • 김정호;곽훈이;양인영
    • 한국안전학회지
    • /
    • 제13권2호
    • /
    • pp.30-38
    • /
    • 1998
  • In this study, in order to measure energy-absorbing characteristics in impact test of CFRP thin-walled laminates and interpret the cause of decreasing age when collapse test is carried out under the environments of high temperatures and hygrothermals, the moisture absorbing behavior according to the variety of orientation angle is observed and impact collapse characteristics of no moisture absorbing status is compared with that under the environments of high temperatures and hygrothermals. Especially, we try to obtain quantitative design data to develop CFRP thin-walled laminates with energy characteristics of optimum impact absorbing. The value of the maximum loading, mean loading, rate of energy absorption energy per unit volume and mass in CFRP thin-walled laminates on the high temperatures and hygrothermals is measured much lower than under no moisture absorbing. The maximum collapse loading in dynamic impact test is taken measurements lower than in static collapse test CFRP circular laminates in high temperatures and hygrothermals. But the absorbed energy per unit mass and volume is almost same each other and the biggest amount of energy is shown in CFRP circular laminates with orientation angle of $15^{\circ}$. Therefore, in the case of using CFRP circular laminates with axisymmetric mode, CFRP thin-walled structural members with orientation angle of $10^{\circ}$, $15^{\circ}$ has generally best condition.

  • PDF

Modeling of progressive collapse of a multi-storey structure using a spring-mass-damper system

  • Yuan, Weifeng;Tan, Kang Hai
    • Structural Engineering and Mechanics
    • /
    • 제37권1호
    • /
    • pp.79-93
    • /
    • 2011
  • A simple mechanical model is proposed to demonstrate qualitatively the pancake progressive collapse of multi-storey structures. The impact between two collapsed storeys is simulated using a simple algorithm that builds on virtual mass-spring-damper system. To analyze various collapse modes, columns and beams are considered separately. Parametric studies show that the process of progressive collapse involves a large number of complex mechanisms. However, the proposed model provides a simple numerical tool to assess the overall behavior of collapse arising from a few initiating causes. Unique features, such as beam-to-beam connection failure criterion, and beam-to-column connection failure criterion are incorporated into the program. Besides, the criterion of local failure of structural members can also be easily incorporated into the proposed model.

고온 .senter dot. 고습환경이 CFRP 적층 원통부재의 압궤특성에 미치는 영향 (Effects of high temperatures and hygrothermals on the collapse characteristics of CFRP thin-walled laminates)

  • 곽훈이;김정호;양인영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.650-654
    • /
    • 1995
  • In this study, in order to measure energy-absorbing charactistics in collapse test of CFRP thin-walled laminates and interpretate the cause of decreasing age when collapse test is carried out under the environments of high temperatures and hygrothermals, the moisture absorbing behavior according to the variety of orientation angel is observed and collapse characteristics is compared with the influence of high temperatures and hygrothermals. Especially, we supposed to clearly understand reationship between collapse characteristics in proportion to the variety of orientation angel and moisture absorbing. The value of the maximum loading, mean loading,rate of energy absorption energy per unit volume and mass in CFRP thin-walled laminates on the high temperatures and hygrothermals is measured lower than under no moisture absorbing. The maximum collapse loading in dynamic impact test is taken measurement lower than in static collapse test regarding compared with collapse characteristics conformity with the variety of the CFRP circular laminates in high temperatures and hygrothermals. But the absorbed energy per unit mass and volume is almost same and the biggest amount of energy is shown in the CFRP circular laminates with orientation angel of 15 .deg.. Therefore, in the case of use to CFRP circular laminates with axisymmetric mode, CFRP thin-walled structal members with orientation angel of 10 .deg. , 15 . deg. are generally useful.

  • PDF

모자형 단면 점용접부재의 축방향 압궤특성에 관한 연구(II) (A Study on the Collapse Characteristics of Hat-shaped Members with Spot Welding under Axial Compression(II))

  • 차천석;양인영
    • 한국정밀공학회지
    • /
    • 제17권5호
    • /
    • pp.195-201
    • /
    • 2000
  • The fundamental spot welded sections of automobiles (hat-shaped and double hat-shaped sections) absorb most of the energy in a front impact collision. The sections of various thickness, shape and weld width on the flange lave been tested on axial impact crush load (Mass 40kg, Velocity 7.19m/sec) using a vertical air pressure crash est device Characteristics of impact collapse have been reviewed and a structure of optimal energy absorbing capacity is suggested.

  • PDF

오스테나이트계 304 스테인리스강의 케비테이션 기포 및 고체 입자 동시 충격 손상의 정량적 고찰 (Quantitative Analysis on the Damage of the Austenitic Stainless Steel under the Simultaneous Cavitation Bubble and Solid Particle Collapses)

  • 홍성모;박진주;이민구;이창규
    • 대한금속재료학회지
    • /
    • 제48권10호
    • /
    • pp.893-900
    • /
    • 2010
  • In the present work, the impact loads and their effects on the surface damage under the simultaneous cavitation bubble and solid particle collapses in the sea water have been quantitatively investigated for the austenitic 304 stainless steel by using a vibratory cavitation test device. To do this, angular $SiO_2$ solid particles with an average size of $150{\mu}m$ were dispersed into the test liquid, and the measured impact amplitudes were converted into the impact loads by a steel ball drop test. The maximum impact load was determined to be 28.2 N in the absence of solid particles, but increased to 33.7 N in the presence of solid particles. In addition, the critical impact loads, $L_{crit}$, required to generate pits with sizes greater than $3{\mu}m$ were measured to be 19.6 N and 16.6 N, respectively, for the cavitation bubble collapse and solid particle collapse. As a result of the cavitation erosion test, the incubation time and erosion rate were 1.2 times lower and 1.5 times higher, respectively, by a solid particle collapse compared to those only by the cavitation bubble collapse, indicating a drastic decrease in a resistance to cavitation erosion by the solid particle collapse.