• Title/Summary/Keyword: Impact Velocity

Search Result 1,361, Processing Time 0.023 seconds

The experimental investigation for penetration depth and shape of aluminum alloy plates by 5.56mm ball projectile with striking velocities between 350 and 750㎧ (고속충격시 볼탄에 의한 알루미늄 합금의 관통 깊이와 형상에 관한 실험적 연구)

  • 손세원;김희재;김영태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.800-803
    • /
    • 2002
  • This investigation describes and analyses the experimental results proper to the penetration of Al5052-H34 alloy plates of thickness 6, 12 and 16mm(T/D=1, 2, 3) by 5.56mm ball projectiles over the velocity range 350-750㎧. All the high velocity impact tests were carried out at normal impact angle, i.e. zero obliquity. The experimental results presented the variation of depth of penetration, bulge height and diameter, plugged length and diameter with the velocity fur tests on each plate of a given thickness in order to determine the deformation shapes of 5.56mm ball projectiles and targets. Also the protection ballistic limit($V_50$) tests were conducted.

  • PDF

A Kinematic Comparison between the Racquetball Backhand and Squash Backhand Strokes (라켓볼 백핸드와 스쿼시 백핸드 스트로크 동작의 운동학적 비교)

  • Kim, Seoung-Eun;Kim, Seung-Kwon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.139-148
    • /
    • 2010
  • The purpose of this study was to comparatively analyze the kinematic variables between the squash backhand and racquetball backhand strokes through three-dimensional cinematography. Three expert racquetball players and three expert squash players were involved in the data gathering process. The horizontal, vertical and lateral displacement of racket and trunk segment, intersegmental angular velocity of the wrist, elbow and shoulder joints, and the linear velocity of the racket were descriptively analyzed, and the followings were concluded. The racket of the squash backhand stroke showed an 'U' shaped movement where the racket moved rapidly downward and moved forward to make an impact and followed through to a front-top finish, while the racket of racquetball backhand stroke showed an 'O' shaped movement where the racket showed circular movement through the rear and bottom positions for the impact, and showed rotation through the lower-front and upper front to a upper-rear-ward finish during the follow-through. The peak velocity of racket was found before the impact point in the squash backhand stroke and at the impact point in the racquetball backhand stroke. For the final conclusion, for the squash backhand stoke, instructors might be better to make the racket move downward to make highest velocity before the impact and finished short follow-through, while for the racquetball backhand stroke, to make the racket move forward to make highest velocity at the impact and finished rather long follow-through.

Study on the Damage Characteristics Under the High-Velocity Impact of Composite Laminates Using Various Sensor Signals (다양한 센서 신호를 이용한 복합적층판의 고속충격 손상 특성 연구)

  • Cho, Sang-Gyu;Kim, In-Gul;Lee, Seok-Je;You, Won-Young
    • Composites Research
    • /
    • v.24 no.6
    • /
    • pp.49-55
    • /
    • 2011
  • The use of advanced composite materials in main structures of military and civil aircraft has been increased rapidly because of their considerable metals in high specific strength and stiffness. However, the mechanical properties of composite materials may severely degrade in the presence of damage. Especially, the high-velocity impact such as a hailstorm, and a small piece of tire or stone during high taxing, can cause considerable damage to the structures and sub-system in spite of a very small mass. However, it is not easy to detect the damage in composite plates using a single sensor or any conventional methods. In this paper, the PVDF sensors and AE sensors were used for monitoring high-velocity impact damage initiation and propagation in composite laminates. The WT(wavelet transform) is used to decompose the sensor signals. In the PVDF sensor and AE sensor signal analysis, amounts of high-frequency signals are increased when the impact energy is increased. PVDF sensor and AE sensor signal appeared similar results. This study shows how various sensing techniques can be used to characterize high-velocity impact damage of advanced composite laminates.

A Study on Low Velocity Impact Characteristics of DP 780 High Strength Steel Sheet with Thickness of 1.7 mm on the Free Boundary Condition Using Three-Dimensional Finite Element Analysis (3 차원 유한요소해석을 이용한 자유경계조건에서의 두께 1.7 mm DP780 고강도 강판의 저 속 충격 특성 분석)

  • Ahn, Dong-Gyu;Nam, Gyung-Heum;Seong, Dae-Yong;Yang, Dong-Yol;Lim, Ji-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.11
    • /
    • pp.46-56
    • /
    • 2010
  • The present research works investigated into the low velocity impact characteristics of DP 780 high strength steel sheet with 1.7 mm in thickness subjected to free boundary condition using three-dimensional finite element analysis. Finite element analysis was carried out via ABAQUS explicit code. Hyper-elastic model and the damping factor were introduced to improve an accuracy of the FE analysis. An appropriate FE model was obtained via the comparison of the results of the FE analyses and those of the impact tests. The influence of the impact energy and nose diameter of the impact head on the force-deflection curves, impact time, absorption characteristics of the impact energy, deformation behaviours, and stress-strain distributions was quantitatively examined using the results of FE analysis. The results of the FE analysis showed that the absorption rate of impact energy lies in the range of the 70.7-77.5 %. In addition, it was noted that the absorption rate of impact energy decreases when the impact energy increases and the nose diameter of the impact head decreases. The local deformation of the impacted region was rapidly increased when the impact energy was larger than 76.2 J and the nose diameter was 20 mm. A critical impact energy, which occur the instability of the DP780, was estimated using the relationship between the plastic strain and the impact energy. Finally, characteristics of the plastic energy dissipation and the strain energy density were discussed.

High-Velocity Deformation Analysis Using the Rigid-Plastic Finite Elemement Method Considering Inertia Effect (관성효과가 고려된 강소성 유한요소법을 이용한 고속변형해석)

  • Yoo, Yo-Han;Park, Khun;Yang, Dong-Yol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1562-1572
    • /
    • 1996
  • The rigid-plastic finite element formulation including the inertia force is derived and then the rigid-plastic finite elemnt program considering the inertia effect is developed. In order to consider the strain hardening, strain rate hardening and thermal softening effects which are frequentrly observed in high-velocity deformation phenomena, the Johnson-Cook constitutive odel is applied. The developed program is used to simulate two high-velocity deformation problemss ; rod impact test and hdigh-velocity compression precess. As a result of rod impact test simulation, it is found that the siulated result has a good agreement with the experimental observation. Through the high-velocity compression process simulation. it is also found that the accuracy of the simulated results is dependent upon the time increment size and mesh size.

Analysis of Racket Head Velocity of Tennis Forehand Stroke by Stance Patterns (스탠스 유형에 따른 테니스 포핸드 스트로크의 라켓헤드 속도분석)

  • Seo, Kuk-Woong;Kang, Young-Teak;Lee, Kyung-Soon;Seo, Kook-Eun;Kim, Jung-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.53-60
    • /
    • 2007
  • Recently tennis techniques has been changed in stance patterns. Stance is consist of square stance, open stance and semi-open stance. The purpose of this study was to analyze the kinematics variables of racket head velocity during forehand stroke by stance patterns. Eight high school tennis players were chosen for the study who use semi western grip right-handed person more than career 7 years. They performed horizontal swing and vertical swing that it was done each five consecutive trial in the condition of square, open and semi-open stance. The results showed that racket head velocity significant difference was not observed in stance types between swings at impact. Y and Z components of racket head velocity for horizontal and vertical swing at second prior to impact and at impact were that y components velocity was faster horizontal swing than vertical swing and z components velocity was later horizontal swing than vertical swing. Statistically significant variable to racket head velocity and Pearson's correlation were drawn as follows. 1. Z components of racket head velocity in square stance was significant correlation by right knee joint. 2. Y components of racket head velocity in semiopen stance was significant correlation by left hip joint. 3. Y components of racket head velocity in open stance was significant correlation by left ankle joint.

Interlaminar stress behavior of laminated composite plates under Low velocity Impact (저속충격을 받는 적층복합재료 평판의 미시구조를 고려한 interlaminar stress 거동 연구)

  • Ji, Kuk-Hyun;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.249-252
    • /
    • 2005
  • Prediction of damage caused by low-velocity impact in laminated composite plate is an important problem faced by designers using composites. Not only the inplane stresses but also the interlaminar normal and shear stresses playa role in estimating the damage caused. The work reported here is an effort in getting better predictions of damage in composite plate using DNS approach. In the DNS model, we discretize the composite plates through separate modeling of fiber and matrix for the local microscopic analysis. Through comparison with the homogenized model. In the view of microscopic mechanics with DNS model, interlaminar stress behaviors in the inside of composite materials is investigated and compared with the results of the homogenized model which has been used in the conventional approach of impact analysis.

  • PDF

Guided wave analysis of air-coupled impact-echo in concrete slab

  • Choi, Hajin;Azari, Hoda
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.257-262
    • /
    • 2017
  • This study aims to develop a signal processing scheme to accurately predict the thickness of concrete slab using air-coupled impact-echo. Air-coupled impact-echo has been applied to concrete non-destructive tests (NDT); however, it is often difficult to obtain thickness mode frequency due to noise components. Furthermore, apparent velocity in concrete is a usually unknown parameter in the field and the thickness of the concrete slab often cannot be accurately measured. This study proposes a signal processing scheme using guided wave analysis, wherein dispersion curves are drawn in both frequency-wave number (f-k) and phase velocity-frequency ($V_{cp}-f$) domains. The theoretical and experimental results demonstrate that thickness mode frequency and apparent velocity in concrete are clearly obtained from the f-k and $V_{cp}-f$ domains, respectively. The proposed method has great potential with regard to the application of air-coupled impact-echo in the field.

Analysis of Effective Anisotropic Elastic Constants and Low-Velocity Impact of Biomimetic Multilayer Structures (생체구조를 모방한 다층복합재료의 이방성 유효탄성계수 및 저속 충격 해석)

  • Lee, Jong-Won;Beom, Hyeon-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1245-1255
    • /
    • 2012
  • Effective elastic constants of biomimetic multilayer structures with hierarchical structures are evaluated based on the potential energy balance method. The effective anisotropic elastic constants are used in analyzing low-velocity impact of biomimetic multilayer structures consisting of mineral and protein. It is shown that displacements of biomimetic multilayer structures strongly depend on the volume fraction of mineral and hierarchical level. The effect of the volume fraction of mineral and hierarchical level on the contact force and stresses at the impact point are also discussed.