• Title/Summary/Keyword: Impact System

Search Result 7,269, Processing Time 0.032 seconds

A Study on the Conservation and culturalization of Archaeological Heritage - On the emphasis of ordering better legitimacy and management system - (고고 유산의 보호 원리와 보존 활용 방안에 대하여 - 법(法)과 제도의 비교 고찰을 중심으로 -)

  • Jang, Ho-su
    • Korean Journal of Heritage: History & Science
    • /
    • v.40
    • /
    • pp.5-34
    • /
    • 2007
  • Archaeological Heritage is material testimony of national and regional history, and it is one of the tourist's attractions. So it has very important meaning and identical value for a local residents. Public concern on the heritage site elevate higher day by day. They are willing to use it for a multiful purpose, cultural, educational, and even commercial one. But Archaeological Heritage is fragile, and visitors can impact negatively for protection and management of the authenticity on the heritage site. In this research I try to compare legal and administrative measure for the protection, management, and culturalization of Archaeological Heritage in many countries. And I suppose sustainable and practical strategies for keeping integrity of heritage.

Deep Learning Based Prediction Method of Long-term Photovoltaic Power Generation Using Meteorological and Seasonal Information (기후 및 계절정보를 이용한 딥러닝 기반의 장기간 태양광 발전량 예측 기법)

  • Lee, Donghun;Kim, Kwanho
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.1
    • /
    • pp.1-16
    • /
    • 2019
  • Recently, since responding to meteorological changes depending on increasing greenhouse gas and electricity demand, the importance prediction of photovoltaic power (PV) is rapidly increasing. In particular, the prediction of PV power generation may help to determine a reasonable price of electricity, and solve the problem addressed such as a system stability and electricity production balance. However, since the dynamic changes of meteorological values such as solar radiation, cloudiness, and temperature, and seasonal changes, the accurate long-term PV power prediction is significantly challenging. Therefore, in this paper, we propose PV power prediction model based on deep learning that can be improved the PV power prediction performance by learning to use meteorological and seasonal information. We evaluate the performances using the proposed model compared to seasonal ARIMA (S-ARIMA) model, which is one of the typical time series methods, and ANN model, which is one hidden layer. As the experiment results using real-world dataset, the proposed model shows the best performance. It means that the proposed model shows positive impact on improving the PV power forecast performance.

Design and Implementation of Fruit harvest time Predicting System based on Machine Learning (머신러닝 적용 과일 수확시기 예측시스템 설계 및 구현)

  • Oh, Jung Won;Kim, Hangkon;Kim, Il-Tae
    • Smart Media Journal
    • /
    • v.8 no.1
    • /
    • pp.74-81
    • /
    • 2019
  • Recently, machine learning technology has had a significant impact on society, particularly in the medical, manufacturing, marketing, finance, broadcasting, and agricultural aspects of human lives. In this paper, we study how to apply machine learning techniques to foods, which have the greatest influence on the human survival. In the field of Smart Farm, which integrates the Internet of Things (IoT) technology into agriculture, we focus on optimizing the crop growth environment by monitoring the growth environment in real time. KT Smart Farm Solution 2.0 has adopted machine learning to optimize temperature and humidity in the greenhouse. Most existing smart farm businesses mainly focus on controlling the growth environment and improving productivity. On the other hand, in this study, we are studying how to apply machine learning with respect to harvest time so that we will be able to harvest fruits of the highest quality and ship them at an excellent cost. In order to apply machine learning techniques to the field of smart farms, it is important to acquire abundant voluminous data. Therefore, to apply accurate machine learning technology, it is necessary to continuously collect large data. Therefore, the color, value, internal temperature, and moisture of greenhouse-grown fruits are collected and secured in real time using color, weight, and temperature/humidity sensors. The proposed FPSML provides an architecture that can be used repeatedly for a similar fruit crop. It allows for a more accurate harvest time as massive data is accumulated continuously.

Detection of genome-wide structural variations in the Shanghai Holstein cattle population using next-generation sequencing

  • Liu, Dengying;Chen, Zhenliang;Zhang, Zhe;Sun, Hao;Ma, Peipei;Zhu, Kai;Liu, Guanglei;Wang, Qishan;Pan, Yuchun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.3
    • /
    • pp.320-333
    • /
    • 2019
  • Objective: The Shanghai Holstein cattle breed is susceptible to severe mastitis and other diseases due to the hot weather and long-term humidity in Shanghai, which is the main distribution centre for providing Holstein semen to various farms throughout China. Our objective was to determine the genetic mechanisms influencing economically important traits, especially diseases that have huge impact on the yield and quality of milk as well as reproduction. Methods: In our study, we detected the structural variations of 1,092 Shanghai Holstein cows by using next-generation sequencing. We used the DELLY software to identify deletions and insertions, cn.MOPS to identify copy-number variants (CNVs). Furthermore, we annotated these structural variations using different bioinformatics tools, such as gene ontology, cattle quantitative trait locus (QTL) database and ingenuity pathway analysis (IPA). Results: The average number of high-quality reads was 3,046,279. After filtering, a total of 16,831 deletions, 12,735 insertions and 490 CNVs were identified. The annotation results showed that these mapped genes were significantly enriched for specific biological functions, such as disease and reproduction. In addition, the enrichment results based on the cattle QTL database showed that the number of variants related to milk and reproduction was higher than the number of variants related to other traits. IPA core analysis found that the structural variations were related to reproduction, lipid metabolism, and inflammation. According to the functional analysis, structural variations were important factors affecting the variation of different traits in Shanghai Holstein cattle. Our results provide meaningful information about structural variations, which may be useful in future assessments of the associations between variations and important phenotypes in Shanghai Holstein cattle. Conclusion: Structural variations identified in this study were extremely different from those of previous studies. Many structural variations were found to be associated with mastitis and reproductive system diseases; these results are in accordance with the characteristics of the environment that Shanghai Holstein cattle experience.

Conceptual eco-hydrological model reflecting the interaction of climate-soil-vegetation-groundwater table in humid regions (습윤 지역의 기후-토양-식생-지하수위 상호작용을 반영한 개념적인 생태 수문 모형)

  • Choi, Jeonghyeon;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.9
    • /
    • pp.681-692
    • /
    • 2021
  • Vegetation processes have a significant impact on rainfall runoff processes through evapotranspiration control, but are rarely considered in the conceptual lumped hydrological model. This study evaluated the model performance of the Hapcheon Dam watershed by integrating the ecological module expressing the leaf area index data sensed remotely from the satellite into the hydrological partition module. The proposed eco-hydrological model has three main features to better represent the eco-hydrological process in humid regions. 1) The growth rate of vegetation is constrained by water shortage stress in the watershed. 2) The maximum growth of vegetation is limited by the energy of the watershed climate. 3) The interaction of vegetation and aquifers is reflected. The proposed model simultaneously simulates hydrologic components and vegetation dynamics of watershed scale. The following findings were found from the validation results using the model parameters estimated by the SCEM algorithm. 1) Estimating the parameters of the eco-hydrological model using the leaf area index and streamflow data can predict the streamflow with similar accuracy and robustness to the hydrological model without the ecological module. 2) Using the remotely sensed leaf area index without filtering as input data is not helpful in estimating streamflow. 3) The integrated eco-hydrological model can provide an excellent estimate of the seasonal variability of the leaf area index.

Analysis of the Change in the Area of Haeundae Beach Based on Wave Characteristics (파랑특성을 고려한 해운대 해수욕장의 해빈면적 변화에 관한 연구)

  • Kim, Jong-Beom;Kim, Jong-Kyu;Kang, Tae-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.324-339
    • /
    • 2021
  • In this study, we determined the correlation between the wave characteristics and the change in the area of Haeundae Beach, conducted regression analysis between the wave characteristics and the change in beach area, and derived a formula for calculating the change in beach area. The change in beach area was calculated by applying the derived formula to wave observation data corresponding to a period of approximately 10 months, and the formula was subsequently validated by comparing the obtained results with the observed area. It is found that the error associated with the formula for calculating the change in beach area ranges from 1.5 m to 2.7 m based on the average beach width, and the correlation coefficient corresponding to the observed area ranges from 0.91 to 0.94. Furthermore, it is observed that the change in beach area is af ected by the wave direction in the western zone, wave height in the central zone, and wave height and wave period in the eastern zone. These results can contribute to understanding the impact of a coastal improvement project on the beach area fluctuation characteristics of Haeundae Beach and the ef ectiveness of such a coastal improvement project. By applying the aforementioned derived formula to highly accurate wave prediction data, the change in beach area can be calculated and incorporated for predicting significant long-term changes in beach areas. Furthermore, such a prediction can be considered as the basis for making decisions while establishing preemptive countermeasure policies to prevent coastal erosion.

Biomechanical Analysis of Lower Limb on Stance during Golf Swing (골프 스윙 시 스탠스에 따른 하지의 역학적 분석)

  • Yoon, Se-Jin;Sul, Jeong-Dug;Woo, Byung-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.532-542
    • /
    • 2021
  • The purpose of this study was to investigate the body's strategy through kinematic variables of the lower extremities and ground reaction forces to maintain the club-head speed and ball accuracy despite the three stances during the golf swing. Ten male golfers who official handicap two were participate in the experiment. All subjects performed swing after maintaining the address posture according to stance conditions(square; SS, open: OS, closed: CS). Using a 3D motion analysis system and force plateform, the results were calculated with the 7-iron full swing each stance. In result, there was no difference in center of displacement, and left and right hip and knee joint angle displacement. Left ankle joint was largely plantar-flexed in OS, and right ankle joint was largely performed in CS from the address to the downswing. From address to take-back, right foot had a large left direction and the left foot had a right direction were greater in OS than in CS. Therefore, despite various stances, maintaining the same posture at impact is thought to have a positive effect on club head speed and ball direction.

An Effects of Succession Plan on Organizational Performance (중소기업의 승계 계획의 활용 정도가 조직성과에 미치는 영향)

  • Son, Yong-Won;Shin, Soo-Young
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.2
    • /
    • pp.489-498
    • /
    • 2021
  • The previous researches on the succession plan have the limitation that it has focused on policies or systems at the government level to facilitate succession, or is limited to family companies. In this study, we would like to analyze the effect of the actual utilization of the succession system for small and medium-sized enterprises rather than the succession by direct families or the government's policies. We would also like to identify other situational factors that may affect this relationship to better understand the succession plan and its relationship with organizational performance. To this end, the analysis of 172 small and medium-sized enterprises in the Human Capital Enterprise Panel showed that the more practical the succession plan of small and medium-sized enterprises is used, the more positive the organizational performance is. These results suggest that small and medium-sized enterprisess succession plan can have a positive impact on organizational performance, such as implicit transfer and formation of positive impressions of companies. Furthermore, cooperative industrial relations strengthened the degree of utilization of succession plans and the positive relationship with organizational performance. Such results showed that the more cooperative the labor-management relations are, the more the successor can secure legitimacy in the process of succession planning based on trust between labor and management.

Structural Stability Evaluation for Special Vehicle Slewing Bearing using Finite Element Analysis (유한요소해석을 통한 특수차량용 선회베어링의 구조 안전성 평가)

  • Seo, Hyun-Soo;Lee, Ho-Jun;An, Tae-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.511-519
    • /
    • 2021
  • Slewing bearing is applied to the transmission of rotational power of the body and turret in a special vehicle for anti-aircraft weapons that overcomes the enemy flight system approaching at low altitudes with rapid response fire. When the turret load and impact load generated when shooting are combined in performing the combat mission of a special vehicle, structural stability must be secured to achieve a successful function. Among the components of the slewing bearing, the stability of the components against the complex loads acting by the turret drive and shooting was evaluated by considering the shape and material characteristics of the ring-gear, roller, and wire-race. As a research method for stability evaluation, based on engineering theory, the strength characteristics of the components were examined by numerical calculations. Finite element analysis was performed on components using the ANSYS analysis program. The results of theoretical analysis and the results of finite element analysis were very similar. A structural stability evaluation for the slewing bearing, which was performed mainly on the analysis, confirmed that the design strength of the slewing bearing determined in the preliminary design in the early stage of localization development was sufficient.

Evaluating meteorological and hydrological impacts on forest fire occurrences using partial least squares-structural equation modeling: a case of Gyeonggi-do (부분최소제곱 구조방정식모형을 이용한 경기도 지역 산불 발생 요인에 대한 기상 및 수문학적 요인의 영향 분석)

  • Kim, Dongwook;Yoo, Jiyoung;Son, Ho Jun;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.3
    • /
    • pp.145-156
    • /
    • 2021
  • Forest fires have frequently occurred around the world, and the damages are increasing. In Korea, most forest fires are initiated by human activities, but climate factors such as temperature, humidity, and wind speed have a great impact on combustion environment of forest fires. In this study, therefore, based on statistics of forest fires in Gyeonggi-do over the past five years, meteorological and hydrological factors (i.e., temperature, humidity, wind speed, precipitation, and drought) were selected in order to quantitatively investigate causal relationships with forest fire. We applied a partial least squares structural equation model (PLS-SEM), which is suitable for analyzing causality and predicting latent variables. The overall results indicated that the measurement and structural models of the PLS-SEM were statistically significant for all evaluation criteria, and meteorological factors such as humidity, temperature, and wind speed affected by amount of -0.42, 0.23 and 0.15 of standardized path coefficient, respectively, on forest fires, whereas hydrological factor such as drought had an effect of 0.23 on forest fires. Therefore, as a practical method, the suggested model can be used for analyzing and evaluating influencing factors of forest fire and also for planning response and preparation of forest fire disasters.