• Title/Summary/Keyword: Impact Properties

Search Result 2,541, Processing Time 0.037 seconds

Characterization and 3D Analysis of PETG/POE Thermoplastic Composites (PETG/POE 열가소성 복합재료의 특성평가 및 전산해석)

  • Yu, Seong-Hun;Lee, Jong-Hyuk;Sim, Ji-Hyun
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.360-367
    • /
    • 2019
  • In order to apply thermoplastic composites using PETG resin to various industrial fields such as bicycle frames and industrial parts, it is necessary to verify the impact resistance, durability, mechanical properties and 3D analysis of the manufactured composite materials. To improve the mechanical properties, durability and impact resistance of PETG resin, an amorphous resin, in this study, compound and injection molding process were carried out enhanced various weight percent POE(polyolefin elastomer). The thermal and mechanical properties of the thermoplastic composites, and the charpy impact strength, The analysis was performed to evaluate the characteristics according to weight percent of POE. Charpy impact strength test was conducted to analyze the impact characteristics, and the fracture section was analyzed after the impact strength test. In the case of POE material-added thermoplastic composites, thermal and mechanical properties tend to decrease, but workability and impact resistance tend to be superior to those of PETG materials.

Effect of Vacuum Heat Treatment and Salt Bath Heat Treatment Conditions on Mechanical Properties of Hot Work Die Steel (열간 금형강의 기계적 성질에 미치는 진공열처리와 염욕열처리 조건의 영향)

  • Kim, Je-Don;Kim, Kyung-sik;Park, Ki-Ho
    • Design & Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.23-29
    • /
    • 2014
  • Salt bath heat treatment is usually used but recently vacuum heat treatment is increased for the heat treatment of hot work die steels. The differences in two heat treatment processes were compared by testing the mechanical properties of heat treated products. With two different features of processes, mechanical properties such as hardness, tensile strength and impact strength of products show very different results. In this study salt bath heat treated products showed higher tensile strength and impact strength than vacuum heat treated products but hardness was not much different. These lower mechanical properties of vacuum heat treated products are due to differences in heating and quenching process.

  • PDF

PC/ASA blends having enhanced interfacial and mechanical properties

  • Kang, M.S.;Kim, C.K.;Lee, J.W.
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Blend of bisphenol-A polycarbonate (PC) and (acrylonitrile-styrene-acrylic rubber) terpolymer (ASA) having excellent balance in the interfacial properties and mechanical strength was developed for the automobile applications. Since interfacial adhesion between PC and styrne-acrylonitrile copolymer (SAN) matrix of ASA is not strong enough, two different types of compatibilizers, i.e, diblock copolymer composed of tetramethyl polycarbonate (TMPC) and SAN (TMPC-b-SAN) and poly(methyl methacrylate) (PMMA) were examined to improve interfacial adhesion between PC and SAN. TMPC-b-SAN was more effective than PMMA in increasing interfacial adhesion between PC and SAN matrix of ASA (or weld-line strength of PC/ASA blend). When blend composition was fixed, PC/ASA blends exhibited similar mechanical properties except impact strength and weld-line strength. Impact strength of PCI ASA blend at low temperature was influenced by rubber particle size and its morphology. PC/ASA blends containing commercially available PMMA as compatibilizer also exhibited excellent balance in mechanical properties and interfacial adhesion.

A study on the Dynamic Fracture Toughness for Polymeric Materials (폴리머재료의 파괴인성치에 관한 연구)

  • 최영식;박명균
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2001.05a
    • /
    • pp.311-317
    • /
    • 2001
  • The notched Charpy and Izod impact tests are the most prevalent techniques used to characterize the effects of high impulse loads on ploymeric materials. An analysis method for rubber toughened PVC is suggested to evaluate critical strain energy release rates(Gc) from the Charpy impact energy measurements. An Instrumented Charpy Impact tester was used to extract ancillary information concerning fracture properties in addition to total fracture properties and maximum critical loads. The stress intensity factor Kd was computed for varying amounts of rubber contents from the obtained maximum critical loads and also toughening effects were investigated as well.

  • PDF

Characteristics of Composite Body Panel (복합재료 Body Panel의 특성평가)

  • Nam, Hyun-Wook;Pyun, Hyun-Joong;Lee, Young-Tae;Han, Kyung-Seop
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.109-114
    • /
    • 2000
  • A research fur development of composite body panel is in progress for lightening tare. In this study, experiments on estimation of mechanical properties of LPMC (Low pressure molding compound) including fatigue and impact characteristics were carried out. The experiments show that LPMC satisfied basic requirements of car body panel. The fatigue life of LPMC was predicted and the material degradation due to fatigue and impact were fined out.

  • PDF

Effects of Laminate Structures on Impact Properties of Laminate Composites (적층복합재료의 충격특성에 미치는 적층구조의 영향)

  • Park, Won-Jo;Huh, Sun-Chul;Lee, Sang-Pill;Yoon, Han-Ki;Lee, Kwang-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.363-369
    • /
    • 2001
  • By alternating $Al_{18}B_4O_{33}$/AC4CH composites with Al1050 sheets and then hot pressing, MMC/Al laminate composites have been successfully fabricated as parameters of the laminate structure and the number of Al sheet. Impact properties for laminate composites have been evaluated both in the laminate structure and in the impact load direction. Lamination of Al sheet and MMC layer showed a remarkable improvement in the absorbed impact energy compared to that of monolithic MMC. Laminate composites mounted with Al sheet at the outside of the configuration had a higher impact energy in the edge wise compared to that with Al sheet at the inside. Furthermore, there was an anisotrpy in the impact value of laminate composites, that is, impact values for the flat wise in a constant volume fraction of Al sheet dramatically increased along with Al sheet number, even if impact values fur the edge wise were nearly constant.

  • PDF

On Evaluation of Material Properties in Spring Steels by Measurement of Ultrasonic Techniques (초음파법에 의한 스프링강의 재질평가에 관하여)

  • Kim, Sang-Su;Ha, Kyung-Jun;Kim, Seon-Jin
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.41-46
    • /
    • 2002
  • The general purpose of this paper is Evaluation of material properties in spring steels by investigate correlation between ultrasonic attenuation and virker's hardness, charpy impact properties, microstructures. The three test speciments of the $490{\times}90 mm$ plates and 20 mm thick are used but differ in heat treatment, one is rolled plate, the second is quenched and then tempered, and the third is quenched. ultrasonic attenuation were obtained at fifteen locations on the plates. In order to investigate the correlation between hardness ( especially, HV ) and the attenuation, the virker's hardness and the microstructures were observed for three spring steels. also the charpy impact test were carried out at the room temperature in order to investigate the relationship between impact properties and the attenuation. The experimental results obtained from three different spring related to the heat treatment conditions and attenuation coefficient is increased with increasing the hardness(HV). Ultrasonic attenuation coefficients have shawn are ability to distinguish among spring steels.

  • PDF

The Effects of Silicon and Nickel Additions on the Mechanical Properties of Heavy Section Ductile Irons for Wind Mill (풍력발전용 후육 구상흑연주철의 기계적 성질에 미치는 Si 및 Ni 첨가의 영향)

  • Park, Heung-Il;Kim, Woo-Yeol;Ahn, Won-Young
    • Journal of Korea Foundry Society
    • /
    • v.26 no.6
    • /
    • pp.258-266
    • /
    • 2006
  • The purpose of this study was to investigate the effects of silicon and nickel additions that influenced the impact and tensile properties of heavy section as-cast ductile irons for wind mill. Based on the results of the metallographic analysis and the mechanical testing on the 2.0 wt.%Si (LS group) and 2.4 wt.%Si (HS group) ductile irons, which contains 0.0, 0.3, 0.6 and 0.9 wt.%Ni, respectively, the following conclusions could be obtained. The nickel additions increased the tensile properties, the microhardness of pearlite, and the pearlite fraction of matrix for the specimen with the same silicon content. The mechanical properties of LS group specimen were in the range of the specification for the ductile iron wind mill castings. The LS group specimens showed higher absorbed impact energy at room temperature and $-20^{\circ}C$ than that of the HS group specimens. However, the absorbed impact energy at $-20^{\circ}C$ for the HS group specimens was observed to be sharply decreased under 10 J by addition of the nickel.

Comparison of Tensile and Impact Properties of Hypo-Eutectoid Steels Containing Micro-Alloying Elements (미량합금 원소가 첨가된 아공석강의 인장 및 충격 특성 비교)

  • Lee, Seung-Yong;Cho, Yun;Hwang, Byoungchul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.1
    • /
    • pp.6-12
    • /
    • 2017
  • In this study tensile and impact properties of three hypo-eutectoid steels containing different micro-alloying elements were investigated in terms of microstructural factors such as pro-eutectoid ferrite grain size, pearlite fraction, interlamellar spacing, and cementite thickness. Yield point phenomenon appeared in all the steel specimens during tensile testing, and ultimate tensile stress was mainly dependent on pearlite fraction. On the other hand, the refinement of austenite grain size caused by the addition of micro-alloying elements resulted in the increment of ferrite volume fraction and carbon contents in pearlite because of the refinement of pro-eutectoid ferrite grain size. As a result, cementite thickness in pearlite increased and had an effect on deteriorating the low temperature impact toughness.