• Title/Summary/Keyword: Impact Loading

Search Result 830, Processing Time 0.028 seconds

Mechanical Behavior of Potato and Sweet Potato under Impact and Compression Loading (감자와 고구마의 충격 및 압축 특성에 관한 연구)

  • Hong J.H.;Kim C.S.;Kim J.Y.;Kim J.H.;Choe J.S.;Chung J.H.;Park J.W.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.4 s.117
    • /
    • pp.369-375
    • /
    • 2006
  • Mechanical properties of potato and sweet potato were measured under impact and compression loading. The test apparatus consisted of disgital storage oscilloscope and simple mechanisms which can apply compression and impact forces to potatoes and sweet potatoes. The mechanical properties could be measured while the tissues were ruptured in a very short period time less than 10 ms by impact loading. Rupture force, energy, and deformation were measured as mechanical properties of potatoes and sweet potatoes under impact and compression loading. Rupture forces under impact and compression loading were in the range of 84.1 to 93.7N and 128.9 to 132.2N for external tissues and 60.1 to 64.8N and 158.9 to 171.1N for internal tissues of potato and sweet potato, respectively. Compression speeds and drop heights for each test were in the range of 1.25 to 62.5mm/min and 8 to 24cm.

Experimental Investigation of Low Velocity Impact Characteristics of Composites Laminate Used in the Light Rail Transit (경전철용 복합적층재에 대한 저속충격특성의 실험적 연구)

  • 김재훈;김후식;박병준;조정미;주정수
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.211-216
    • /
    • 2001
  • It is well known that composite laminates are easily damaged by low velocity impact. Low velocity impact damage characteristics and residual compressive strength of composite laminates used in light rail transit are investigated. The damage of composite laminates subjected to impact loading are occurred matrix cracking, delamination, and fiber breakage. The damage of matrix cracking and delamination are reduced suddenly the compressive strength after impact. The objectives of this study is to evaluate impact characteristics and the relationship between impact force and inside damage of composite laminates by low velocity impact loading. UT C-scan is used to determine impact damage areas by impact loading.

  • PDF

Impact force and acoustic analysis on composite plates with in-plane loading (면내하중을 받는 복합적층판에 대한 충격하중 및 음향 해석)

  • Kim, Sung-Joon;Park, Ill-Kyung;Ahn, Seok-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.244-249
    • /
    • 2011
  • The potential hazards resulting from a low-velocity impact (bird-strike, tool drop, runway debris, etc.) on aircraft structures, such as engine nacelle or a leading edges, has been a long-term concern to the aircraft industry. Certification authorities require that exposed aircraft components must be tested to prove their capability to withstand low-velocity impact without suffering critical damage. In most of the past research studies unloaded specimens have been used for impact tests, however, in reality it is much more likely that a composite structure is exposed to a certain stress state when it is being impacted, which can have a significant effect on the impact performance. And the radiated impact sound induced by impact is analyzed for the damage detection evaluation. In this study, an investigation was undertaken to evaluate the effect in-plane loading on the impact force and sound of composite laminates numerically.

  • PDF

Deformation Behavior of Zr-based Bulk Metallic Glass by Indentation under Different Loading Rate Conditions (다른 하중속도 조건에서 압입에 의한 벌크 금속유리의 변형거동)

  • Shin, Hyung-Seop;Chang, Soon-Nam
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.42-47
    • /
    • 2004
  • Metallic glasses are amorphous meta-stable solids and are now being processed in bulk form suitable for structural applications including impact. Bulk metallic glasses have many unique mechanical properties such as high yield strength and fracture toughness, good corrosion and wear resistance that distinguish them from crystalline metals and alloys. However, only a few studies could be found mentioning the dynamic response and damage of metallic glasses under impact or shock loading. In this study, we employed a small explosive detonator for the dynamic indentation on a Zr-based bulk amorphous metal in order to evaluate the damage behavior of bulk amorphous metal under impact loading. These results were compared with those of spherical indentation under quasi-static and impact loading. The interface bonded specimens were adopted to observe the appearances of subsurface damage induced during indentation under different loading conditions.

  • PDF

Impact performance study of filled thin-walled tubes with PM-35 steel core

  • Kunlong Tian;Chao Zhao;Yi Zhou;Xingu Zhong;Xiong Peng;Qunyu Yang
    • Structural Engineering and Mechanics
    • /
    • v.91 no.1
    • /
    • pp.75-86
    • /
    • 2024
  • In this paper, the porous metal PM-35 is proposed as the filler material of filled thin-walled tubes (FTTs), and a series of experimental study is conducted to investigate the dynamic behavior and energy absorption performance of PM-35 filled thin-walled tubes under impact loading. Firstly, cylinder solid specimens of PM-35 steel are tested to investigate the impact mechanical behavior by using the Split Hopkinson pressure bar set (SHP); Secondly, the filled thin-walled tube specimens with different geometric parameters are designed and tested to investigate the feasibility of PM-35 steel applied in FTTs by the orthogonal test. According to the results of this research, it is concluded that PM-35 steel is with the excellent characteristics of high energy absorption capacity and low yield strength, which make it a potential filler material for FTTs. The micron-sizes pore structure of PM-35 is the main reason for the macroscopic mechanical behavior of PM-35 steel under impact loading, which makes the material to exhibit greater deformation when subjected to external forces and obviously improve the toughness of the material. In addition, PM-35 steel core-filled thin-wall tube has excellent energy absorption ability under high-speed impact, which shows great application potential in the anti-collision structure facilities of high-speed railway and maglev train. The parameter V0 is most sensitive to the energy absorption of FTT specimens under impact loading, and the sensitivity order of different variations to the energy absorption is loading speed V0>D/t>D/L. The loading efficiency of the FTT is affected by its different geometry, which is mainly determined by the sleeve material and the filling material, which are not sensitive to changes in loading speed V0, D/t and D/L parameters.

Axial impact behavior of confined concrete filled square steel tubes using fiber reinforced polymer

  • Zhang, Yitian;Shan, Bo;Kang, Thomas H.K.;Xiao, Yan
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.165-176
    • /
    • 2021
  • Existing research on confined concrete filled steel tubular (CCFT) columns has been mainly focused on static or cyclic loading. In this paper, square section CCFT and CFT columns were tested under both static and impact loading, using a 10,000 kN capacity compression test machine and a drop weight testing equipment. Research parameters included bonded and unbonded fiber reinforced polymer (FRP) wraps, with carbon, basalt and glass FRPs (or CFRP, BFRP, and GFRP), respectively. Time history curves for impact force and steel strain observed are discussed in detail. Experimental results show that the failure modes of specimens under impact testing were characterized by local buckling of the steel tube and cracking at the corners, for both CCFT and CFT columns, similar to those under static loading. For both static and impact loading, the FRP wraps could improve the behavior and increase the loading capacity. To analyze the dynamic behavior of the composite columns, a finite element, FE, model was established in LS-DYNA. A simplified method that is compared favorably with test results is also proposed to predict the impact load capacity of square CCFT columns.

A study on the improvement method of heat treatment condition for the long-term stability evaluation in the floor impact isolator (층간소음저감재 장기 내구성 평가를 위한 가열시험의 문제점 및 개선방안에 관한 연구)

  • Park, Youn-Joon;Lee, Chan-Gyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.238-243
    • /
    • 2011
  • This study compared Kd, loss factor and thickness of floor impact isolator by loading/unloading heat treatment with results by continuous loading treatment and checked problem and improvement method of heat treatment condition for the long-term stability evaluation of the floor impact isolation. As the results, it is required the change of heat treatment condition unloading now to loading as actual weigh on the floor impact isolator.

  • PDF

Elucidating the mechanical behavior of ultra-high-strength concrete under repeated impact loading

  • Tai, Yuh-Shiou;Wang, Iau-Teh
    • Structural Engineering and Mechanics
    • /
    • v.37 no.1
    • /
    • pp.1-15
    • /
    • 2011
  • The response of concrete to transient dynamic loading has received extensive attention for both civil and military applications. Accordingly, thoroughly understanding the response and failure modes of concrete subjected to impact or explosive loading is vital to the protection provided by fortifications. Reactive powder concrete (RPC), as developed by Richard and Cheyrezy (1995) in recent years, is a unique mixture that is cured such that it has an ultra-high compressive strength. In this work, the concrete cylinders with different steel fiber volume fractions were subjected to repeated impact loading by a split Hopkinson Pressure Bar (SHPB) device. Experimental results indicate that the ability of repeated impact resistance of ultra-high-strength concrete was markedly superior to that of other specimens. Additionally, the rate of damage was decelerated and the energy absorption of ultra-high-strength concrete improved as the steel fiber volume fraction increased.

Evaluation of Residual Strength Under Impact Damage in Woven CFRP Composites (평직 CFRP 복합재료의 충격잔류강도 평가)

  • Choi, Jung-Hun;Kang, Min-Sung;Koo, Jae-Mean;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.654-663
    • /
    • 2012
  • Damage induced by low velocity impact loading in aircraft composite is the form of failure which is frequently occurred in aircraft. As the consequences of impact loading in composite laminates, matrix cracking, delamination and eventually fiber breakage for higher impact energies can be occurred. Even when no visible impact damage is observed, damage can exist inside of composite laminates and carrying load of the composite laminates is considerably reduced. The objective of this study is to evaluate and predict residual strength behavior of composite laminates by impact loading and for this, tensile test after impact was carried out on composite laminates made of woven CFRP.

A Study on the Penetration Fracture Strength of Fragile Plates subjected to High Speed Impact (고속 충격을 받는 취성재 평판의 관통파괴 강도)

  • 김지훈;심재기;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.3-9
    • /
    • 1996
  • In this study, comparison of theoretical solutions with experimental results is examined through fracture conditions for the case of float glasses subjected static loading. The range of fracture generation limits and critical penetration energies are solved according to the impactor mass under the high velocity, and analytical method of fracture strength and penetration strength are presented. Also, fracture patterns are investigated according to impact velocities. The results obtained from this study are as follows ; 1) Radial cracks are generated from the loading point regardless of plate thickness in the case of the plate subjected to the static loading. In the case of high-speed impact, dimensions of ring cracks become to smaller and length of radial cracks becomes shorter with the rapidity of impact velocity. 2) Kinetic change volume of collision after/before is constant regardless of velocities over the range of critical penetration velocity. 3) Although the same impact energy is working, the critical penetration energy is increased with the shorter of impactor mass. 4) Although the same impact energy is working, the penetration fracture of lighter Impactor mass is generated more than that of heavier impactor mass, and the impulse of lighter impacter mass appear more than that of heavier impactor mass. Therefore, the penetration fracture in the case of greater impulse is generated earlier regardless of the of the dimensions of Impact loading.

  • PDF