• Title/Summary/Keyword: Impact Hammer Drill

Search Result 8, Processing Time 0.033 seconds

A Study on Improving the Impact Force of Impact Hammer Drill (충격햄머드릴의 타격력 향상을 위한 연구)

  • 김재환;정재천;박병규;백복현
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.669-679
    • /
    • 1997
  • This paper deals with a study of striker type impact hammer drill for improving the drilling performance. The study was performed through a numerical simulation of the impact hammer mechanism and an experimental comparison of the numerical simulation results was followed. Optimization of the impact mechanism was also performed. The numerical model of the impact hammer drill takes into account the striker motion and the effects of the pressure in the cylinder as well as the friction acting on the striker. The equation of motion is solved with the pressure equation in the cylinder including the friction force. The friction is considered as a combination of Coulomb friction and viscous damping friction. At the moment of impact, an ideal impact model that uses restitution coefficient is used to calculate the sudden change of the striker motion. The numerically simulated impact force shows a good agreement with the experimental result and thus, the validity of the numerical model is proven. Based upon the proposed model, an optimization was performed to improve the impact force of the hammer drill. The objective function is to maximize the impact force and the used design variables are striker mass, frequency of piston, bit guide mass, cylindrical diameter and dimensions of the mechanism components. Each design variable and some other conditions that are essential to manitain normal operation of the hammer drill are considered as constraints. The optimized result show a remarkable improvement in impact force and an experimental proof was investigated.

  • PDF

Modeling and Design of Impact Hammer Drill (충격햄머드릴의 기구해석 및 설계)

  • 박병규;김재환;백복현;정재천
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.146-152
    • /
    • 1997
  • This paper deals with a study of striker type impact hammer drill for improving the drilling performance. The study was performed through a numerical simulation of the impact hammer mechanism, an experimental comparison of the numerical simulation results and an optimization of the impact mechanism. The numerical model of the impact hammer drill takes into account the striker motion and the effects of the pressure in the cylinder as well as the friction acting on the striker. The equation of motion is solved with the pressure equation in the cylinder and the friction force. At the moment of impact, an ideal impact model that uses restitutiion codfficient is used to calculate the sudden change of the striker motion. The impact force numerically simulated shows a good agreement with the experimental results and thus, the validity of the numerical model is proven. Based upon the proposed model, an optimization was performed to improve the impact force of the hammer drill. The objective function is to maximize the impact force and the design variables are striker mass, frequency of piston, bit guide mass, cylindrical diameter and dimensions of the mechanism components. Each design variable and some other conditions that are essential to maintain normal operation of the hammer drill are considered as constraints. The optimized result shows remarkable improvement in impact force and an experimental proof was investigated.

  • PDF

Research for Performance Improvement of Impact Hammer Drill (충격 햄머 드릴의 성능향상을 위한 연구)

  • Kim, Jeahwan;Park, Cheolwoo;Han, Sangyong;Guan, Namjin;Kang, Chungu;Jung, Youngchae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.536-541
    • /
    • 2005
  • This paper Presents the performance test of an impact hammer drill in conjunction with the parameter consideration of coefficient of restitution, lubrication and friction, pressure leakage, vibration damper and production quality. Novel measurement setups are innovated in order to get the Parameter data. The measured data are compared with the computational results, and this comparison gives a confidence on the computational model, which can be used for a optimal design of impact hammer drills.

Research for performance improvement of impact hammer drill (충격 헤머 드릴의 성능향상을 위한 연구)

  • Park, Cheol-Woo;Kim, Jea-Hwan;Han, Sang-Yong;Guan, Nam-Jin;Kang, Chun-Gu;Jung, Young-Chae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.333-336
    • /
    • 2004
  • This paper presents performance of the impact hammer drill with coefficient of restitution, lubrication and friction, pressure leakage, damper efficiency and the general quality test. The novel measurement systems are introduced in order to get the reasonable data. The mechanism of strikers with inner pressure is revealed in the general quality test. Due to these factors we are able to make the computational analysis correctly.

  • PDF

Optimization of Down-the-Hole Hammer Using Experimental Design Method (실험설계법을 이용한 다운더홀(DTH) 해머의 최적화)

  • Hwang, Un Kyoo;Lim, Jong Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.603-611
    • /
    • 2016
  • Research and development of mineral-resource-related products has progressed with the increased need to develop mineral resources. The DTH hammer is a resultant product. However, owing to particular work conditions of underground drilling, it is difficult to obtain direct data on the DTH hammer. A DTH drill rig requires a significant amount of money and time for actual testing. This thesis aimed to resolve this problem by using CAE. In a previous paper, the structure of the DTH hammer and its movement were analyzed, and a standard model based on simulation was proposed. Then, experimentation and comparison verification were conducted. In this paper, by using an experimental design method, we derived a control factor of the impact force and efficiency of the DTH hammer and attempted to optimize the design. As a result, the impact energy increased by 14.9%, and the efficiency increased by 3.3%.

Analysis of the Influence of the Design Factors and Modeling for the 8inch Class Down-the-Hole Hammer (8인치급 다운더홀(DTH) 해머의 모델링 및 설계 인자에 따른 영향도 분석)

  • Lee, Chung No;Hong, Ki Chang;Jeong, Heon Sul
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.1-8
    • /
    • 2017
  • The Down-the-Hole hammer is one of the pneumatic drill equipment used for grinding, drilling, and mining. One the advantages of which is that a reduction work efficiency at deep site are relatively small compared to other drilling methods. Due to the large vibration in the underground area, it is difficult to measure the performance of the hammer, and hammer testing requires substantial production cost and operating expenses so research on the development of the hammer is insufficient. Therefore, this study has developed a dynamic simulation model that apprehends the operating principles of an 8-inch DTH hammer and calculates performance data such as performance impact force, piston speed, and BPM. By using the simulation model, design factors related to strike force and BPM were selected, and the influence of each design factors on performance was analyzed through ANOVA analysis. As a result, be the most important for BPM and the strike force are position of upper port that push the piston in the direction of the bit and in BPM, the size of the empty space between the bits and the piston is the second most important design factor.

Dynamic response of free-end rod with consideration of wave frequency

  • Kim, Sang Yeob;Lee, Jong-Sub;Tutumluer, Erol;Byun, Yong-Hoon
    • Geomechanics and Engineering
    • /
    • v.28 no.1
    • /
    • pp.25-33
    • /
    • 2022
  • The energy transferred on drill rods by dynamic impact mainly determines the penetration depth for in-situ tests. In this study, the dynamic response and transferred energy of drill rods are determined from the frequency of the stress waves. AW-type drill rods of lengths 1 to 3 m are prepared, and strain gauges and an accelerometer are installed at the head and tip of the connected rods. The drill rods are hung on strings, allowing free vibration, and then impacted by a pendulum hammer with fixed potential energy. Increasing the rod length L increases the wave roundtrip time (2L/c, where c is the wave velocity), and hence the transferred energy at the rod head. At the rod tip, the first velocity peak is higher than the first force peak because a large and tensile stress wave is reflected, and the transferred energy converges to zero. The resonant frequency increases with rod length in the waveforms measured by the strain gauges, and fluctuates in the waveforms measured by the accelerometer. In addition, the dynamic response and transferred energy are perturbed when the cutoff frequency is lower than 2 kHz. This study implies that the resonant frequency should be considered for the interpretation of transferred energy on drill rods.