• 제목/요약/키워드: Impact Fracture Toughness

검색결과 185건 처리시간 0.022초

$CaCO_3$ / PP 입자 강화 복합재료의 온도변화에 따른 파괴기구 (Temperature Dependent Failure Machanisms of CaCO3 / PP Particulates)

  • 고성위;김형진
    • 수산해양기술연구
    • /
    • 제30권3호
    • /
    • pp.220-226
    • /
    • 1994
  • In this paper the failure mechanisms of polypropylene resin composites filled with calcium carbonate particulates have been studied in the temperature range $-50^{\circ}C$ to $-50^{\circ}C$ The fillers used are both untreated and surface treated with stearic acid. The impact fracture toughness is evaluated from the impact energy absorbed divided by the uncut ligament area of the specimen. Impact fracture toughness increases as temperature is raised whether the fillers are coated or not. The static fracture toughness of these particular composites is evaluated based on the linear clastic fracture toughness of these particular composites is evaluated based on the linear clastic fracture mechanics. Static fracture toughess decreases with increasing temperature whether the fillers are coated or not. An extended stress whitened zone are observed through a large number of availabel sites for cavitation/debonding along particle matrix interface and matrix deformation.

  • PDF

입열량에 따른 FCAW용접부 파괴인성에 미치는 미세조직의 영향 (Evaluation of Fracture Toughness and Microstructure on FCA Weldment According to Heat Input)

  • 신용택;강성원;김명현
    • Journal of Welding and Joining
    • /
    • 제26권3호
    • /
    • pp.51-60
    • /
    • 2008
  • This paper is to evaluate fracture characteristics of API 2W Gr.50 TMCP steel weldment typically applied for offshore structures, with the focus on the influence of heat input arising from flux cored arc welding. Based on the results and insights developed from this study, it is found that the toughness for both CTOD and impact exhibits a tendency to decrease as the weld heat input increases. The reheated zone of weldmetal exhibit lower hardness than solidified zone and microstructure that are liable to affect the toughness are acicular ferrite and martensite-austenite constituents (M-A). In particular, M-A is a more effective micro-phase for CTOD toughness than impact toughness.

Ni-Mo-Cr계 저합금강의 천이온도영역에서의 파괴인성에 미치는 Ni 및 Cr 함량의 영향 (Effects of Ni and Cr Contents on the Fracture Toughness of Ni-Mo-Cr Low Alloy Steels in the Transition Temperature Region)

  • 이기형;박상규;김민철;이봉상;위당문
    • 대한금속재료학회지
    • /
    • 제47권9호
    • /
    • pp.533-541
    • /
    • 2009
  • Materials used for a reactor pressure vessel(RPV) are required high strength and toughness, which determine the safety margin and life of a reactor. Ni-Mo-Cr low alloy steel shows better mechanical properties than existing RPV steels due to higher Ni and Cr contents compared to the existing RPV steels. The present study focuses on effects of Ni, Cr contents on the cleavage fracture toughness of Ni-Mo-Cr low alloy steels in the transition temperature region. The fracture toughness was characterized by a 3-point bend test of precracked Charpy V-notch(PCVN) specimens based on ASTM E1921-08. The test results indicated that the fracture toughness was considerably improved with an increase of Ni and Cr contents. Especially, control of Cr content was more effective in improving fracture toughness than manipulating Ni content, though Charpy impact toughness was changed more extensively by adjusting Ni content. These differences between changes in the fracture toughness and that in the impact toughness were derived from microstructural features, such as martensite lath size and carbide precipitation behavior.

고속철도용 윤축의 정${\cdot}$동적파괴인성 평가 (Static and Dynamic Fracture Toughness of Wheelset for High Speed Train)

  • 권석진
    • 한국철도학회논문집
    • /
    • 제8권3호
    • /
    • pp.210-215
    • /
    • 2005
  • The safety evaluations of railway wheelsets make use of the static fracture toughness obtained in ingot materials. The static fracture toughness of wheelset materials has been extensively studied by experiments, but the dynamic fracture toughness with respect to wheelset materials has not been studied enough yet. It is necessary to evaluate the characteristics of the fracture mechanics depending on each location for a full-scale wheelset for high-speed trains, because the load state for each location of the wheelset while running is different the contact load between the wheel and rail, cyclic stress in the wheel plate, etc. This paper deals with the fracture toughness depend on load rates. The fracture toughness depending on load rate data shows that once the downward curve from quasi-static values was reached, subsequent values showed a slow increase with respect to the impact velocity. This means that dynamic fracture toughness should be considered in the design code of the wheelset material.

콤포케스팅법에 의해 제조된 알루미늄 금속복합재료의 동파괴 인성치에 관한 연구 (Experimental Investigation of the Dynamic Fracture Toughness for Aluminum Alumina Whisker Metal Matrix Composites)

  • Kim, M.S.;Lee, H.C.
    • 한국정밀공학회지
    • /
    • 제10권3호
    • /
    • pp.152-160
    • /
    • 1993
  • This paper presents experimental study of the static and dynamic fracture toughness behavior of a A1-6061 aluminum alloy reinforced alumina( .delta. -A1$_{2}$0$_{3}$) whiskers with 5%, 10%, 15% volume fraction. The static fracture tests using three-point bending specimen were performed by UTM25T. And drop weight impact tester performing dynamic fracture tests was used to measure dynamic locads applied to a fatigue-precracked specimes. The oneset of crack initiation was detected uwing a strain gage bonded near a crack tip. The value of static fracture toughness $K_{IC}$ and dynamic fracture toughness $K_{ID}$ were decided on the basis of linear elastic fracture mechanics. The effects of fiber volume fraction and loading on fracture toughness were investigated. The distribution of whiskers, bonding state and fracture interfaces involved in void, fiber pull-out state were investigated by optical microscopy(OM) and scanning electron microscopy(SEM)

  • PDF

Estimation of fracture toughness of cast steel container from Charpy impact test data

  • Bellahcenea, Tassadit;Aberkane, Meziane
    • Steel and Composite Structures
    • /
    • 제25권6호
    • /
    • pp.639-648
    • /
    • 2017
  • Fracture energy values KV have been measured on cast steel, used in the container manufacture, by instrumented Charpy impact testing. This material has a large ductility on the upper transition region at $+20^{\circ}C$ and a ductile tearing with an expended plasticity before a brittle fracture on the lower transition region at $-20^{\circ}C$. To assess the fracture toughness of this material we use, the $K_{IC}$-KV correlations to measure the critical stress intensity factor $K_{IC}$ on the lower transition region and the dynamic force - displacement curves to measure the critical fracture toughness $J{\rho}_C$, the essential work of fracture ${\Gamma}_e$ on the upper transition region. It is found, using the $K_{IC}$-KV correlations, that the critical stress intensity factor $K_{IC}$ remains significant, on the lower transition region, which indicating that our testing material preserves his ductility at low temperature and it is apt to be used as a container's material. It is, also, found that the $J_{\rho}-{\rho}$ energetic criterion, used on the upper transition region, gives a good evaluation of the fracture toughness closest to those found in the literature. Finally, we show, by using the ${\Gamma}_e-K_{IC}$ relation, on the lower transition region, that the essential work of fracture is not suitable for the toughness measurement because the strong scatter of the experimental data. To complete this study by a numerical approach we used the ANSYS code to determine the critical fracture toughness $J_{ANSYS}$ on the upper transition region.

크롬합금강의 동적파괴인성에 미치는 이온실화처리의 영향 (Influence of Ion-Nitriding on Dynamic Fracture Toughness in Cr Alloy Steels)

  • 오세욱;윤한기;장래웅;김기술
    • 한국해양공학회지
    • /
    • 제2권1호
    • /
    • pp.150-162
    • /
    • 1988
  • The dynamic fracture toughness, $K_{Id}$,is measured in the heat-treated and ion-nitrided Cr-Mo, Ni-Cr-Mo steel using standard and Precracked Charpy specimens an imstrumented impact machine. The value of $K_{Id}$and both the energy of initiate fracture, and the total energy of fracture. Since the $K_{Id}$values of the precraked impact specimens are in accord with their theoretical ones, this testing method is sufficently practical. The effect of ion-nitriding are found to be larger than the heat-treaded specimen.

  • PDF

임계위치에서의 고속철도용 윤축의 파괴인성 (Fracture Toughness of Wheelset for High Speed Train on the Critical Locations)

  • 권석진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.865-871
    • /
    • 2004
  • The safety evaluations of railway wheel sets make use of the static fracture toughness obtained in ingot materials. The static fracture toughness of wheelset materials has been extensively studied by experiments, but the dynamic fracture toughness with respect to wheel set materials has not been studied enough yet. It is necessary to evaluate the characteristics of the fracture mechanics depending on each location for a full-scale wheel set for high-speed trains, because the load state for each location of the wheel set while running is different the contact load between the wheel and rail, cyclic stress in the wheel plate, etc. This paper deals with the fracture toughness depend on load rates. The fracture toughness depending on load rate data shows that once the downward curve from quasi-static values was reached, subsequent values showed a slow increase with respect to the impact velocity. This means that dynamic fracture toughness should be considered in the design code of the wheelset material.

  • PDF

Charpy 충격시험편을 이용한 로터강의 인성 열화도 평가

  • 남승훈;김시천;이해무
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.728-731
    • /
    • 1995
  • Miniaturzed specimen technology permits mechanical bechanical behavior to be determined using a minimum volume of material. because it is almost impossible to sample the conventional specimen for the fracture toughness test without damage to the rotor. In addition, it is different to collect a large amount of actual turbine rotor steels. Hence seven kinds of specimen with different degradation levels were prepared by isothermal aging heat treatment at 630 .deg. C. Test material was 1Cr-1Mo-0.25V steel which was widely used for turbine rotor material. The relation between fracture toughness and DBTT was investigated The characteristics of minaturized impact speciments technique was discussed. Finally, the estimating method of fracture toughness using a single impact specimen was introduced.

  • PDF

섬유종류에 따른 섬유보강 모르타르의 파괴저감성능 평가 (Evaluation of fracture reduction performance of fiber reinforced mortar according to fiber type)

  • 노종찬;김규용;김홍섭;구경모;윤민호;유재철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.38-39
    • /
    • 2013
  • In this study, in regard to fiber reinforced mortar mixing steel fiber and 4types of organic fiber, impact test was carried out. Because to predict fracture reduction performance with flexural, tensile strength when types of fiber were different as impact reduction performance of concrete is closely related with toughness such as flexural strength, tensile strength and fracture energy etc. As a result, enhancement of toughness by fiber reinforcement controls the spall of rear. On the other hand in case of steel fiber relatively turned up high toughness in appropriate load compared with organic fiber but in same mixing rate, impact reduction performance by projectile showed low performance due to few number of an individual of mixing.

  • PDF