• Title/Summary/Keyword: Impact Energy Absorption

Search Result 266, Processing Time 0.028 seconds

Design of Knee-Pelvis Joint in the Biped Robot for Shock Reduction and Gravity Compensation (충격 감소 및 중력 보상을 위한 이족보행로봇의 무릎-골반 관절 설계)

  • Kim, Young-Min;Kim, Yong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.136-142
    • /
    • 2015
  • In the paper, a design method of knee and pelvis joint in the biped robot is proposed for shock absorption and gravity compensation. Similarly to the human's body, the knee joints of the biped robot support most body weight and get a shock from the landing motion of the foot on the floor. The torque of joint motor is also increased sharply to keep the balance of the robot. Knee and pelvis joints with the spring are designed to compensate the gravity force and reduce the contact shock of the robot. To verify the efficiency of the proposed design method, we develope a biped robot with the joint mechanism using springs. At first, we experiment with the developed robot on the static motions such as the bent-knee posture both without load and with load on the flat ground, and the balance posture on the incline plane. The current of knee joint is measured to analyze the impact force and energy consumption of the joint motors. Also, we observe the motor current of knee and pelvis joints for the walking motion of the biped robot. The current responses of joint motors show that the proposed method has an effect on shock reduction and gravity compensation, and improve the energy efficiency of walking motions for the biped robot.

Experimental Study on the Axial Crushing Behavior of Truncated Cone Type Brake Device (콘 형상 제동장치의 축방향 압축변형에 대한 실험적 연구)

  • Kim, Ji-Chul;Lee, Hak-Yeol;Kim, Il-Soo;Shim, Woo-Jeon
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.169-176
    • /
    • 2002
  • Axial crushing behavior of cylindrical shell Is utilized in the braking of the high-velocity impacting object. In this paper, truncated cone shape brake device is introduced. That is, thickness of the shell is increased gradually from the impacting end to the other end. A detailed experimental investigation on the quasi-static axial crushing behavior of truncated cone type brake devices has been performed. Specimens of various shape were tested to check the influence of design parameters such as length, radius, mean thickness, and conical angle of cylinder. Influence of the material properties were also investigated by adopting aluminum, low carbon steel, and stainless steel as constructing materials. By analyzing deformation procedures of the specimens, it is seen that conical angle influence the deformation mode and the sequence of the wrinkles generation. Braking distance and mean braking force of each specimen were predicted based on the crushing load measured from the tests.

  • PDF

Effect of Si Contents on Structure and Mechanical Properties of Al-Si Alloy Metallic Foams (Al-Si 합금 발포금속의 조직 및 기계적 특성에 미치는 Si함량의 영향)

  • Kim, Byeong-Gu;Tak, Byeong-Su;Jeong, Seung-Reung;Jeong, Min-Jae;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.30 no.1
    • /
    • pp.22-28
    • /
    • 2010
  • Metal foam is a porous or cellular structure material and representative property is a very high porosity. Foamed materials have very special properties such as sound, vibration, energy and impact absorption capacity. Especially this properties are widely used for safety demands of architecture, auto and aircraft industry. But metal foam need to increased its compression strength and hardness. This study were researched about Al-Si alloy foams with variation amount of Si contents for their fabrication and properties such as porosity, cell structure, microstructure and mechanical properties. The result are that the range of pore size is 2~4 $mm{\phi}$, the high porosity are 88%, high yield strength is 1.8MPa, the strain ratio is 60~70% and vickers hardness is 33.1~50.6.

Comparative Crashworthiness Assessment of the ULSAB-AVC Model with Advance High Strength Steel and with Low Strength Steel (고강도 강판 ULSAB-AVC 모델과 일반강판 모델의 충돌성능 비교 평가)

  • Yoon, Jong-Heon;Huh, Hoon;Kim, Se-Ho;Kim, Hong-Kee;Park, Seung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.22-27
    • /
    • 2006
  • As the regulation and assessment program for safety of passengers become stringent, automakers are required to develop lighter and safer vehicles. In order to fulfill both requirements which conflict with each other, automobile and steel companies have proposed the application of AHSS(Advance High Strength Steel) such as DP, TRIP and martensite steel. ULSAB-AVC model is one of the most remarkable reactions to offer solutions with the use of steel for the challenge to improve simultaneously the fuel efficiency, passenger safety, vehicle performance and affordability. This paper is concerned with the crash analysis of ULSAB-AVC model according to the US-SINCAP in order to compare the effectiveness between the model with AHSS and that with conventional steels. The crashworthiness is investigated by comparing the deformed shape of the cabin room, the energy absorption characteristics and the intrusion velocity of a car.

A Study on the Collapse Characteristics of Al/CFRP Square Structural Member for Light Weight (경량화용 Al/CFRP 사각 구조부재의 압궤 특성에 관한 연구)

  • Hwang, Woo-Chae;Sim, Jae-Ki;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.219-224
    • /
    • 2011
  • Aluminum or CFRP is representative one of the lightweight materials. Collapse behavior of Al/CFRP square structural member was evaluated in this study based on the respective collapse behavior of aluminum and CFRP member. Al/CFRP square structural members were manufactured by wrapping CFRP prepreg sheets outside the aluminum hollow members in the autoclave. Because the CFRP is an anisotropic material with mechanical properties, The Al/CFRP square structural members stacked at different angles(${\pm}15^{\circ}$, ${\pm}45^{\circ}$, ${\pm}90^{\circ}$, $90^{\circ}/0^{\circ}$ and $0^{\circ}/90^{\circ}$ where the direction on $0^{\circ}$ coincides with the axis of the member) and interface numbers(2, 3, 4, 6 and 7). The axial impact collapse tests were carried out for each section members. Collapse mode and energy absorption characteristics of the each member were analyzed.

Structural Optimization of Industrial Safety Helmet According to Frame Shape using Engineering Plastic (엔지니어링 플라스틱 소재별 보강뿔대 형상에 따른 산업용 안전모의 구조 최적화)

  • Park, Man-Ho;Lee, Yeo-Wool;Lee, Yong-Moon;Park, Jae-Ha;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.41-48
    • /
    • 2019
  • The industrial safety helmets are personal protective equipment (PPE), used to protect the head against falls from a height. This study indicated the necessity of wearing a safety helmet while working at heights below 4 m, through analysis of fall accidents occurring in the industrial field. The stress, displacement, and strain of the safety helmet shell structure have been analyzed using the finite element method with various thicknesses, engineering plastics, and designs. It was preferred that the safety helmet shell structure had a reinforcement frame of uniform thickness in terms of increased impact strength and strain energy absorption rate. The thickness can be reduced to lighten the total weight for workers wearing safety helmets.

Effect of milk flavor supplementation on growth performance, nutrient digestibility, fecal score, and blood profiles in weaning piglets

  • Sarbani, Biswas;In Ho, Kim
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.441-450
    • /
    • 2022
  • This study explored the effects of milk flavor (MF) supplementation on growth efficiency, nutrient absorption, fecal score, and blood profiles in weaning piglets. A total of 80 (21 days old) crossbred ([Yorkshire × Duroc] × Landrace) healthy weaned piglets with an initial body weight (BW) of 7.05 ± 1.22 kg were randomly allotted to one of two nutritive treatments with 8 repetitions and five pigs (2 female and 3 male) per pen. The experiment was divided into 2 phases (d 0 - 21, and d 21 - 42), and the dietary treatments consisted of TRT1, basal diet, TRT2 and basal diet + 1.0 g·kg-1 MF. At days 21 - 42 and the overall period, the average daily gain (ADG) and average daily feed intake (ADFI) increased (p < 0.05) by receiving the MF added feed. However, MF inclusion did not impact (p > 0.05) the feed efficiency (G : F) throughout the entire experiment. Piglets consuming the MF supplemented diet showed that the apparent total tract digestibility of dry matter (DM), nitrogen (N) and energy (E) did not vary significantly (p > 0.05) between the treatments. All through the experiment, the fecal score and blood profile of the piglets fed the flavor diet also remained unaffected (p > 0.05). In conclusion, MF addition to the diet of the piglets increased their body weight and had no adverse effects on nutrient utilization, fecal score, and blood profile. Thus, MF addition could improve the performance outcomes of weaning piglets.

A Study on Side Impact from Car-to-Car using Finite Element Analysis (유한요소해석을 이용한 차대차 측면충돌에 대한 연구)

  • Han, Yuong-Kyu;Baek, Se-Ryong;Yoon, Jun-Kyu;Lim, Jong-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.201-209
    • /
    • 2015
  • The deformed degree of car body varies largely with the collision part from side collision of car-to-car. In case of deformation of car body caused by collision, the movement is different as speed energy changes to strain energy. Generally, in the analysis of traffic accident, the movement of car after the collision is analyzed by law of conservation of motion and the error of energy absorption rate along the deformation of car body can be calibrated by inputting coefficient of restitution, but it is current situation that coefficient of restitution applied by referring to the research results of forward collision and backward collision because the research results of side collision is rare. Vehicle model of finite element method applied by structure of car body and materials of each component was analyzed by explicit finite element method, and coefficient of restitution and collision detection time along contact part of side collision was drawn by analyzing the results. Analysis result acquired through the law of conservation momentum by applying finally-computed coefficient of restitution and crash detection time compared to collision result of actual vehicle. As a result, the reliability of analysis was higher than the existing analysis method were acquired when applying the drawn initial input value that used finite element method analysis model.

A Study on the Strength of the Helmets with a Lobe in the Summit (정상 돌출부를 갖는 안전모의 강도 안전성에 관한 연구)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.37-41
    • /
    • 2013
  • This paper presents the strength safety of stress and deformation behaviors using the finite element method as a function of the thickness of the protective helmets with and without an extruder on the top of the shell structure. The helmet that would provide head and neck protections without causing discomfort to the user when it was worn for long periods of time should be manufactured for increasing the safety and impact energy absorption. The stress analyzed results show that when the impulsive force of 4,540N is applied on the top surface of a helmet, the safe thickness is 3.7mm for the conventional helmet and 3.2mm for the modified new helmet. Based on the deformation analysis, the FEM results recommend that the safe thickness is 3.2mm for the conventional helmet and 2.0mm for the modified new helmet. Thus, it may be more safe design of the helmet, which has an extruded structure on the summit surface of the helmet.

Fabrication and Characterization of Aluminum Honeycomb Panel (경량 알루미늄 허니콤 판재의 제작 및 특성 평가)

  • Kim, Kee Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.666-671
    • /
    • 2018
  • A honeycomb panel is a plate made by attaching two surface plateson eitherside of a honeycomb core. The honeycomb plate hasexcellent specific strength and energy absorption and is suitable for use in regions where good impact resistance is required. Recently, with the increasing the need for a lightweight design to facilitate transportation, numerous studies have been conducted using aluminum honeycomb plates as body materials for vehicles such as automobiles and high-speed trains. In addition, honeycomb plates have excellent sound deadening properties, as well as excellent heat insulation and durability. Savings in weight using lightweight materials such as aluminum alloy for honeycomb panel's skin can lead to increase fuel economy and reduction in air pollution. In this study, in order to improve the design technology of the honeycomb plate material, the manufacturing technology of the aluminum honeycomb core and honeycomb plate material and various mechanical properties of the honeycomb plate were evaluated. From the results, it was found that the design of the manufacturing process of the aluminum honeycomb plate, as well as itsproduction and characteristics, were improved. The resulting excellent energy absorption capability of the honeycomb plate was due to the repetitive core buckling, indicating that the higher the compressive strength, the higher the strength per bonded area.