• Title/Summary/Keyword: Impact Damping

Search Result 326, Processing Time 0.027 seconds

Impact characteristics of the stainless sheet on the fixed boundary condition (고정형 조건에서의 스테인레스 강판의 충격 특성)

  • Ahn, Dong-Gyu;Moon, Kyung-Je;Jung, Chang-Gyun;Han, Gil-Young;Yang, Dong-Yol
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.48-53
    • /
    • 2007
  • The objective of this paper is to investigate the influence of impact conditions on the impact characteristics of the stainless sheet for the case of the fixed boundary conditions. In order to examine impact characteristics of the sheet, three-dimensional finite element analyses and impact tests have been performed. High speed tensile tests have been carried out to obtain strain-stress relationships including the effects of the strain rate. In order to improve an accuracy of the FE analysis, the hyper-elastic model and the damping factor have been introduced. The results of the FE analyses and the impact tests have been shown that the diameter of the impact head does not affect the absorption energy of the stainless sheet. In addition, it has been shown that the absorption rate of energy maintains almost $82.5\;\sim\;83.5\;%$ irrespective of the impact energy level and the diameter of the impact head. From the results of FE analyses, the variation of stress and strain energy in the stainless sheet has been quantitatively examined.

  • PDF

A 3D FEA Model with Plastic Shots for Evaluation of Peening Residual Stress due to Multi-Impacts (다중충돌 피닝잔류응력 평가를 위한 소성숏이 포함된 3차원 유한요소해석 모델)

  • Kim, Tae-Hyung;Lee, Hyungy-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.642-653
    • /
    • 2008
  • In this paper, we propose a 3-D finite element (FE) analysis model with combined physical behavior and kinematical impact factors for evaluation of residual stress in multi-impact shot peening. The FE model considers both physical behavior of material and characteristics of kinematical impact. The physical parameters include elastic-plastic FE modeling of shot ball, material damping coefficient, dynamic friction coefficient. The kinematical parameters include impact velocity and diameter of shot ball. Multi-impact FE model consists of 3-D symmetry-cell. We can describe a certain repeated area of peened specimen under equibiaxial residual stress by the cell. With the cell model, we investigate the FE peening coverage, dependency on the impact sequence, effect of repeated cycle. The proposed FE model provides converged and unique solution of surface stress, maximum compressive residual stress and deformation depth at four impact positions. Further, in contrast to the rigid and elastic shots, plastically deformable shot produces residual stresses closer to experimental solutions by X-ray diffraction. Consequently, it is confirmed that the FE model with peening factors and plastic shot is valid for multi-shot peening analyses.

Monitoring in-service performance of fibre-reinforced foamed urethane sleepers/bearers in railway urban turnout systems

  • Kaewunruen, Sakdirat
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.1
    • /
    • pp.131-157
    • /
    • 2014
  • Special track systems used to divert a train to other directions or other tracks are generally called 'railway turnout'. A traditional turnout system consists of steel rails, switches, crossings, steel plates, fasteners, screw spikes, timber bearers, ballast and formation. The wheel rail contact over the crossing transfer zone has a dip-like shape and can often cause detrimental impact loads on the railway track and its components. The large impact also emits disturbing noises (either impact or ground-borne noise) to railway neighbors. In a brown-field railway track where an existing aged infrastructure requires renewal or maintenance, some physical constraints and construction complexities may dominate the choice of track forms or certain components. With the difficulty to seek for high-quality timbers with dimensional stability, a methodology to replace aged timber bearers in harsh dynamic environments is to adopt an alternative material that could mimic responses and characteristics of timber in both static and dynamic loading conditions. A critical review has suggested an application of an alternative material called fibre-reinforced foamed urethane (FFU). The full-scale capacity design makes use of its comparable engineering characteristics to timber, high-impact attenuation, high damping property, and a longer service life. A field trial to investigate in-situ behaviours of a turnout grillage system using an alternative material, 'fibre-reinforced foamed urethane (FFU)' bearers, has been carried out at a complex turnout junction under heavy mixed traffics at Hornsby, New South Wales, Australia. The turnout junction was renewed using the FFU bearers altogether with new special track components. Influences of the FFU bearers on track geometry (recorded by track inspection vehicle 'AK Car'), track settlement (based on survey data), track dynamics, and acoustic characteristics have been measured. Operational train pass-by measurements have been analysed to evaluate the effectiveness of the replacement methodology. Comparative studies show that the use of FFU bearers generates higher rail and sleeper accelerations but the damping capacity of the FFU help suppress vibration transferring onto other track components. The survey data analysis suggests a small vertical settlement and negligible lateral movement of the turnout system. The static and dynamic behaviours of FFU bearers appear to equate that of natural timber but its service life is superior.

Continuous force excited bridge dynamic test and structural flexibility identification theory

  • Zhou, Liming;Zhang, Jian
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.391-405
    • /
    • 2019
  • Compared to the ambient vibration test mainly identifying the structural modal parameters, such as frequency, damping and mode shapes, the impact testing, which benefits from measuring both impacting forces and structural responses, has the merit to identify not only the structural modal parameters but also more detailed structural parameters, in particular flexibility. However, in traditional impact tests, an impacting hammer or artificial excitation device is employed, which restricts the efficiency of tests on various bridge structures. To resolve this problem, we propose a new method whereby a moving vehicle is taken as a continuous exciter and develop a corresponding flexibility identification theory, in which the continuous wheel forces induced by the moving vehicle is considered as structural input and the acceleration response of the bridge as the output, thus a structural flexibility matrix can be identified and then structural deflections of the bridge under arbitrary static loads can be predicted. The proposed method is more convenient, time-saving and cost-effective compared with traditional impact tests. However, because the proposed test produces a spatially continuous force while classical impact forces are spatially discrete, a new flexibility identification theory is required, and a novel structural identification method involving with equivalent load distribution, the enhanced Frequency Response Function (eFRFs) construction and modal scaling factor identification is proposed to make use of the continuous excitation force to identify the basic modal parameters as well as the structural flexibility. Laboratory and numerical examples are given, which validate the effectiveness of the proposed method. Furthermore, parametric analysis including road roughness, vehicle speed, vehicle weight, vehicle's stiffness and damping are conducted and the results obtained demonstrate that the developed method has strong robustness except that the relative error increases with the increase of measurement noise.

Response Characteristics of a Lumped Parameter Impact System under Random Excitation (집중질량 충격시스템의 불규칙가진에 대한 응답특성)

  • 이창희
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.778-784
    • /
    • 1999
  • A method for obtaining the motion of an impact system whose primary and secondary system are composed of lumped masses, springs and dampers, and all the contacts are made through spring and damping elements is presented. The frequency response functions derived from the equations of motion and the impulse response functions obtained from the inverse Fourier transform of the derived frequency response functions are used for the calculation of the system responses. The procedure developed for the calculation of displacements and force time-histories was based on the convolution integrals of impulse response functions and forces applied to the systems. Time histories of displacements and contact forces are obtained for the case where a random excitation is applied to a point in the system. Impact statistics such as contact forces and the time between impacts calculated from those time histories is presented.

  • PDF

A Study of floor impact noise reduction in a steel structure by using the floating floor (Floating floor를 이용한 강구조물의 바닥충격음 저감에 관한 연구)

  • 김현실;김재승;강현주;김봉기;김상렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.751-755
    • /
    • 2003
  • In this paper, floor impact noise reduction in a steel structure is studied. A mock-up is built by using 6t steel plate, and two identical cabins are made where 25t panel is used to construct wall and ceiling inside the steel structure. Various floating floor systems are tested for which normalized impact noise is measured according to ISO 140-7. In addition, floor SBN(Structure-borne Noise) and floor damping are measured to study the effect of floating floor. structure. It is shown that VL(Visco-elastic Layer) is more effective when hard plates are added above the VL.

  • PDF

A Study of Floor Impact Noise Reduction of Cabin Using Floating Floor (뜬바닥구조를 이용한 선실 바닥충격음 저감에 관한 연구)

  • Kim, Hyun-Sil;Kim, Bong-Ki;Cha, Sun-Il;Kim, Young-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.5
    • /
    • pp.41-47
    • /
    • 2004
  • In this paper, floor impact noise reduction in cruise ship cabin is studied. A mock-up is built by using 6t steel plate, and two identical cabins are made where 25t panel is used to construct wall and ceiling inside the steel structure. Various floating floor systems are tested for which normalized impact noise is measured according to ISO 140-7. In addition, floor SBN (Structure-borne Noise) and floor damping are measured to study the effect of floating floor structure. It is shown that VL(Visco-elastic Layer) is more effective when hard plates are added above the VL.

An Impact Test for investigating the Dynamic Characteristics of Actual Bridge Foundation (교량기초의 동적특성 파악을 위한 충격실험)

  • Kim, Hak-Soo;Lee, Sang-Hee;Yang, Kyung-Taek;Kim, Saeng-Bin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.1 no.2
    • /
    • pp.115-122
    • /
    • 1997
  • Although most bridge foundations are usually constructed by Caisson, terrain difficulties sometimes bring about constructing bridge foundations by Jacket piles. This study investigated the dynamic characteristics of Caisson and Jacket by testing the impact applied to actual bridge foundations. The test result showed that the damping ratio of the foundation constructed by Jacket and Caisson were measured 1-2% and 3-6%, respectively. Considering the lateral deflection measured by the impact test, the rigidity of foundations constructed by Jacket was assessed about 1/5 - 1/6 of those constructed by Caisson. It implies that designing bridge foundations should include and reflect the dynamic analysis of bridge foundation.

  • PDF