• Title/Summary/Keyword: Impact Crusher

Search Result 25, Processing Time 0.024 seconds

A Study on Quality Improvement and Verification of Recycled Coarse Aggregate for Concrete Using an Impact Crusher with Radial Rotation (방사형 회전이 추가된 임팩트 크러셔를 이용한 콘크리트용 순환굵은골재 품질향상 및 검증 연구)

  • Jeon, Duk-Woo;Kim, Yong-Seong;Jeon, Chan-Soo;Choi, Won-Young;Cho, Won-Ig
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.133-142
    • /
    • 2022
  • The purpose of this study is to develop an impact crusher with a radial rotating plate installed at the bottom, which is a shock absorber that can produce high-quality recycled coarse aggregate for concrete and to verify the effect of improving the quality performance of recycled coarse aggregate and its applicability through concrete tests. As a result, it showed improved quality in all items such as absolute dry density, absorption rate, abrasion resistance, Particle shape judgment rate, amount lost in the 0.08 mm sieve passing test, alkali aggregate reaction, clay mass, stability, and impurity content, and it was found to meet the criteria of recycled aggregate quality standards. In addition, the air volume and slump of concrete to which recycled coarse aggregate is applied meet all domestic standards. According to the test results of the compressive strength characteristics by age of concrete according to the mixing ratio of the recycled coarse aggregate, it was confirmed that the mixing ratio of the recycled coarse aggregate was applicable up to 60 %.

Properties of Fresh Concrete with Dry Bottom Ash Processed by Various Method (다양한 방법으로 가공한 건식공정 바텀애시를 사용한 콘크리트의 굳지 않은 상태에서의 특성)

  • Sun, Joung-Soo;Choi, Hong-Beom;Lee, Myeong-Jin;Yu, Jae-Seong;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.92-93
    • /
    • 2014
  • This study was carried out to process the shape of dry bottom ash using the impact crusher and gravity crusher, which are identified as most effective in improving grain shape through the preceding research, and a comparison was made between concrete that utilized the processed dry bottom ash as aggregate and concrete containing dry bottom ash before processing to understand properties of the new concrete.

  • PDF

Fundamental Characteristics of Concrete for Nuclear Power Plant Using Crushed Sand (부순모래 사용에 따른 원전 구조물용 콘크리트의 기초적 특성)

  • Park, Sung-Hak;Kim, Kyung-Hwan;Choi, Byung-Keol;Choi, Yun-Wang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.168-176
    • /
    • 2017
  • This study, as a research for using crushed sand as a fine aggregate of concrete for nuclear structures, we improved the performance of impact crusher in the existing crushed sand production process and adjusted grain size to conform to ASTM C 33 The shape and grain size characteristics of a crushed sand were examined and concrete was prepared according to the substitution ratio of the sand to investigate the properties of fresh concrete and hardened concrete. The experimental results show that most of the concrete characteristics are equivalent to those of concrete using only heavy sand. However, when the substitution rate of steel sand exceeds 50%, the amount of air, compressive strength and tensile strength are somewhat reduced.

Application of Aggregate Recycled in-situ for Anti-frost Layer and Lean Concrete Base Course (저노현장파쇄 순환골재의 동상방지층 및 빈배합콘크리트기층 정용성평가)

  • Kim Jin-cheol;Shim Jae-won;Cho Kyou-sung
    • Resources Recycling
    • /
    • v.14 no.4 s.66
    • /
    • pp.10-16
    • /
    • 2005
  • In order to recycle the waste concrete from which the reproductive aggregate should be produced in-situ, the applicability of crushers and recycled aggregates, and the compliance with the specification have been evaluated comprehensively. As a result of them, the properties of recycled aggregate particles were inferior to the natural one because of the adherent mortars on the recycled one, and the mobile impact crusher and the eccentric-mounted cone and jaw were superior to the others for the graded aggregates. In the case of anti-frost layer, the recycled one was easily controlled since the dry densities, contrary to natural one, were not largely changed with the moisture contents. It was found that the lean concrete base course is not influenced by absorption as cement dust grows larger, and the 7-day compressive strengths of lean concrete were higher than 10 MPa regardless of the crushing type.

A Experimental Study on Properties Matter of Recycle Concrete used Electrical crusher in Underwater (전기 충격식 수중파쇄 재생골재를 이용한 재생콘크리트의 물성에 관한 실험적 연구)

  • 박희곤;조상영;정근호;이영도;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.269-274
    • /
    • 2002
  • Recently, Recycling aggregates could be gained from the reconstruction works using recycle process and the study and research of recycle concretes developed concrete application methods. It could put some outcome of studies to practical use for concrete products. The methods of crushing waste concrete are going diverse. In this study, the fundamental experiments and recycling application is investigated and analyzed with use of recycling aggregate which made of mechanical crush and underwater electrical impact crush, and the difference between underwater electrical impact crush, mechanical crush and natural aggregates is studied.

  • PDF

A Study on Basis Properties Matter of Recycle Aggregate Concrete Used Electrical Crusher System in Underwater (전기 충격식 수중파쇄 시스템을 이용한 재생골재 콘크리트의 기초물성에 관한 연구)

  • 박희곤;윤상혁;조상영;정근호;이영도;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.693-698
    • /
    • 2002
  • The production accounts of domestic by-product is increased after 1990's. It is worried about the life reduction of dump land, as dump land's capacity have reached to limitation and the amount of construction industrial wastes is going higher. Recently, recycling aggregates could be gained from the reconstruction works using recycle process. And the study and research of recycle concretes developed concrete application methods. It could put some outcome of studies to practical use for concrete products. The methods of crushing waste concrete are going diverse. In this study, the fundamental experiments and recycling application is investigated and analyzed with use of recycling aggregate which made of mechanical crush and underwater electrical impact crush. and the difference between underwater electrical impact crush, mechanical crush and natural aggregates is studied.

  • PDF

An Experimental Study on Field Application of Recycled Aggregate Concrete - Focused on Recycled Aggregate from Underwater Crusher by Electric Impact System - (재생골재 콘크리트의 현장적용을 위한 실험적 연구 - 전기충격식으로 수중파쇄된 재생골재를 중심으로 -)

  • Park, Hee-Gon;Jung, Keun-Ho;Lim, Nam-Ki;Lee, Young-Do;Jung, Sang-Jin;Jung, Jae-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.1
    • /
    • pp.123-129
    • /
    • 2003
  • The production accounts of domestic by-product is increased after 1990's. It is worried about the life reduction of dump land, as dump land's capacity have reached to limitation and the amount of construction industrial wastes is going higher. Recently, recycling aggregates could be gained from the reconstruction works using recycle process, and the study research of recycle concretes developed concrete application methods. It could put some outcome of studies to practical use for concrete products. The methods of crushing waste concrete are going diverse. In this study. the fundamental experiments and recycling application is investigated and analyzed with use of recycling aggregate which made of mechanical crush and underwater electrical impact crush, and the difference between underwater electrical impact crush, mechanical crush and natural aggregates is studied.

A Experimental Study on Properties Matter of Recycle Aggregate Concrete Crush Method Waste-Concrete - Focused on the Recycle Aggregate used Electrical Crusher System in Underwater - (폐콘크리트 파쇄 방법에 따른 재생골재 콘크리트의 물성에 관한 실험적 연구 - 전기충격식 수중파쇄 시스템을 이용한 재생골재를 중심으로 -)

  • 박희곤;조상영;백민수;이영도;양극영;정상진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.05a
    • /
    • pp.51-55
    • /
    • 2002
  • The production accounts of domestic by-product is increased after 1990's. It is worried about the life reduction of dump land, as dump land's capacity have reached to limitation and the amount of construction industrial wastes is going higher Recently, Recycling aggregates could be gained from the reconstruction works using recycle process. and the study and research of recycle concretes developed concrete application methods, It could put some outcome of studies to practical use for concrete products. The methods of crushing waste concrete are going diverse. In this study, the fundamental experiments and recycling application is investigated and analyzed with use of recycling aggregate which made of mechanical crush and underwater electrical impact crush. and the difference between underwater electrical impact crush, mechanical crush and natural aggregates is studied.

  • PDF

Execution Case Study on the Explosive Demolition of a Large-Section RC Special Structure (대단면 철근콘크리트 특수구조물 발파해체 시공 사례)

  • Park, Hoon;Suk, Chul-Gi
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.397-406
    • /
    • 2009
  • Recently, the number of industrial structures that must be demolished due to structural deterioration and unsatisfactory functional conditions has been increased. To minimize environmental hazardous factors created during the process of demolition, the explosive demolition method has been applied increasingly. This execution case was intended to describe an application of the explosive demolition method to the demolition of a Crusher & Screen structure, which was a large-section reinforced concrete special structure. It was deemed necessary due to its structural deterioration and unsatisfactory functional condition. Various pre-weakening processes and blasting patterns were applied to the large-section reinforced concrete members, and to reduce blasting vibration and impact vibration, time intervals were established for blasting in the same column and for blasting between blasting blocks. By applying the explosive demolition method to the demolition of a large-section reinforced concrete special structure, the explosive demolition was completed safely and efficiently, without causing any damage to surrounding facilities.