• 제목/요약/키워드: Impact Condition

검색결과 1,862건 처리시간 0.038초

동정맥루의 복합성 혈류학 소견이 그 관리에 미치는 영향 (Impact of Complex Hemodynamics to the Management of ArterioVenous(AV) Fistula)

  • 이병붕
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.9-10
    • /
    • 2002
  • Human circulatory system between heart and tissue is not directly connected in normal condition but mandatory to go through the capillary system in order to fulfill its physiologic aim to deliver oxygen and nutrients, etc. to the tissue and retrieve used blood together with waste products from the tissue properly. When abnormal connection between arterial and venous system (AV fistula), these two circulatory systems respond differently to the hemodynamic impact of this abnormal connection between high pressure (artery) and low pressure (vein) system. Depending upon the location and/or degree (e.g. size and flow) of fistulous condition, each circulatory system exerts different compensatory hemodynamic response to this newly developed abnormal inter-relationship between two systems in order to minimize its hemodynamic impact to own system of different hemodynamic characteristics. Pump action of the heart can assist the failing arterial system directly to maintain arterial circulation against newly established low peripheral resistance by the AV fistula during the compensation period, while it affects venous system in negative way with increased venous loading. However, the negative impact of increased heart action to the venous system is partly compensated by the lymphatic system which is the third circulatory system to assist venous system independently with different hemodynamics. The lymphatic system with own unique Iymphodynamics based on peristaltic circulation from low resistance to high resistance condition, also increases its circulation to assist the compensation of overloaded venous system. Once these compensation mechanisms should fail to fight to newly established hemodynamic condition due to this abnormal AV connection, each system start to show different physiologic ${\underline{de}compensation}$ including heart and lymphatic system. The vicious cycle of decompensation between arterial and vein, two circulatory system affecting each other by mutually negative way steadily progresses to show series of hemodynamic change throughout entire circulation system altogether including heart. Clinical outcome of AV fistula from the compensated status to decompensated status is closely affected by various biological and mechanical factors to make the hemodynmic status more complicated. Proper understanding of these crucial biomechanical factors iii particular on hemodyanmic point of view is mandatory for the advanced assessment of biomechanical impact of AV fistula, since this new advanced concept of AY fistula based on blomechanical information will be able to improve clinical control of the complicated AV fistula, either congenital or acquired.

  • PDF

An analytical solution for finitely long hollow cylinder subjected to torsional impact

  • Wang, X.;Wang, X.Y.;Hao, W.H.
    • Structural Engineering and Mechanics
    • /
    • 제19권3호
    • /
    • pp.281-295
    • /
    • 2005
  • An analytical method is presented to solve the elastodynamic problem of finitely long hollow cylinder subjected to torsional impact often occurs in engineering mechanics. The analytical solution is composed of a solution of quasi-static equation satisfied with the non-homogeneous boundary condition and a solution of dynamic equation satisfied with homogeneous boundary condition. The quasi-static solution is obtained directly by solving the quasi-static equation satisfied with the non-homogeneous boundary condition. The solution of the non-homogeneous dynamic equation is obtained by means of finite Hankel transform on the radial variable, r, Laplace transform on time variable, t, and finite Fourier transform on axial variable, z. Thus, the solution for finitely long, hollow cylinder subjected to torsion impact is obtained. In the calculating examples, the response histories and distributions of shear stress in the finitely long hollow cylinder subjected to an exponential decay torsion load are obtained, and the results have been analyzed and discussed. Finally, a dynamic finite element for the same problem is carried out by using ABAQUS finite element analysis. Comparing the analytical solution with the finite element solution, it can be found that two kinds of results obtained by means of two different methods agree well. Therefore, it is further concluded that the analytical method and computing process presented in the paper are effective and accurate.

Effect of Impact Energy on the Impact-Wear Properties of High Manganese Steels in Acidic Corrosive Conditions

  • Wang, Kai;Du, Xiao-Dong;Wu, Kai;Youn, Kuk-Tae;Lee, Chan Gyu;Koo, Bon Heun
    • Corrosion Science and Technology
    • /
    • 제7권6호
    • /
    • pp.362-369
    • /
    • 2008
  • The impact abrasion behavior of high manganese steel is investigated under three kinds of impact energy in acid hematite ore slurry by using a modified MLD-10 impact abrasion tester. Through the SEM observation of the worn surface and the optical metallographic analysis of the cross-sectional samples, the corrosive impact abrasion mechanisms of the steel under different impact energies are studied. In acid-hematite slurry, the variations of impact energies would result in synchronous transformation of the impact abrasion properties and mechanisms of the high manganese steel in the corrosive condition, as led different corrosive impact abrasion mechanism under different impact energies.

외부 충격시 우측팔의 생체역학적 거동해석 (A Study on the Behavior of Human Right Arm under Impact Condition)

  • 채제욱;이준호;김현준
    • 한국군사과학기술학회지
    • /
    • 제12권2호
    • /
    • pp.152-158
    • /
    • 2009
  • In this paper, the right arm was modelled by muscle-skeleton elements to obtain the behavior of right arm of human under impact condition, where physical and geometrical properties of human body such as Young's modulus, shear modulus, cross sectional area, length, density, moment of inertia and position were defined. Based on the numerical model of the right arm, the impact response of the right arm was obtained. By the comparison with the experimental results, the model of the right arm was verified.

수음실 잔향시간 변화에 따른 중량 충격음 레벨 특성 - 실험실 환경을 중심으로 - (Floor Impact Sound Pressure Level Characteristics by the Change of Reverberation Time in Mock-up Test Rooms)

  • 정정호;이병권;연준오;전진용
    • 한국소음진동공학회논문집
    • /
    • 제24권4호
    • /
    • pp.339-347
    • /
    • 2014
  • Floor impact sound in high-rise apartment building became one of social problems. A lot of civil complaints on floor impact sound occur continuously and the number of disputes between neighbors in small and aged apartment buildings is increasing. Interests on heavy-weight impact sound pressure level measurement and evaluation method is increased. Previous study reported that heavy-weight impact sound level was changed by the sound field condition of receiving reverberation chamber. In this study, heavy-weight impact sound pressure level change by the receiving sound field condition was measured in standard test facility and mock-up test room. These two experimental conditions were designed to simulate averaged living room of common apartment units. By the change of sound absorption power in receiving room, heavy-weight impact sound pressure level in most of frequency bands were changed in standard test facility and mock-up room. Normalized maximum sound pressure level regulated in ISO 16032 showed wider range of heavy/soft impact sound pressure level. Heavy/soft impact sound pressure level change was became smaller by the application of standardized maximum sound pressure level and ISO/CD 10140-3 Amd 2 method. In the case of standardized maximum sound pressure level, absolute sound pressure level changed. From these results, receiving sound field correction method regulated in ISO/CD 10140-3 Amd 2 is needed for the precision measurement and evaluation of heavy-weight impact sound.

동일 충격 에너지 조건에서의 발포 폴리우레탄의 충격특성에 관한 연구 (Crashworthy behaviour of rigid polyurethane foam under constant impact energy)

  • ;정광영;최영종;전성식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.43-47
    • /
    • 2007
  • Based on experimental impact testing data, due to changing of velocity and mass of the impactor simultaneously under constant impact energy, crashworthiness of polyurethane foam has been observed. Dynamic tests were carried out in an instrumented impact-testing machine. Also, modified Sherwood-Frost model was proposed to investigate the crashworthy behaviour of rigid polyurethane foam under the condition of constant impact energy.

  • PDF

사용후 핵연료 수송용기의 수평낙하충격에 관한 연구 (A Study on the Side Drop Impact of a Nuclear Spent Fuel Shipping Cask)

  • 정성환;이영신
    • 대한기계학회논문집A
    • /
    • 제21권3호
    • /
    • pp.457-469
    • /
    • 1997
  • A nuclear spent fuel shipping cask is required by IAEA and domestic regulations to withstand a 9m free drop condition. In this paper, the structural analysis under the 9m side drop condition was performed to understand the dynamic impact behavior and to evaluate the safety of the cask for 7 PWR nuclear spent fuel assemblies. The analysis result was compared with the measured value of the 9m side drop test for the 1/3 scaled-down model and the accuracy of the 3D analysis was confirmed. Analysis in accordance with the diameter of impact limiters for the proto-type cask were performed. Through the analysis, the impact behaviors due to the side drop and the effects dependent on the diameter of impact limiters were grasped. Maximum stress intensities on each part of the cask were respectively calculated by using the stress evaluation program and the structural safety of the cask was finally evaluated in accordance with the regulations.

한국인의 인체 특성을 고려한 사격시 충격특성 해석 (A Study on Impact Analysis of the Korean Anthropometric Characteristic on Shooting)

  • 이장원;이영신;최영진;채제욱;최의중
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.150-153
    • /
    • 2005
  • The rifle impact of human body is affected by geometry of human for rifling. The interaction of human-rifle system influence a firing accuracy. In this paper, impact analysis of human model for standing postures with two B.C. carried out. ADAMS code and LifeMOD is used in impact analysis of human model and modeling of the human body, respectively. On the shooting, human model is affected by rifle impact during the 0.001 second. Also, Because Human Natural frequency is 5-200Hz, human impact is considered during 0.2-0.005 sec. Dut to the Firng test, Performed simulation time for shooting is 0.1 second. Applied constraint condition to human-rifle system is rotating and spherical condition. Also, The resulrt of changin the position of the grip is dfferent from the each other. As the results, The human model of firing was built successfully.

  • PDF

Zr-기 벌크 아몰퍼스 금속의 충격 파괴 거동 (Impact Fracture Behaviors of Zr-Based Bulk Amorphous Metals)

  • 고동균;정영진;신형섭;오상엽
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1246-1251
    • /
    • 2003
  • The fracture behaviors of Zr-based bulk amorphous metals(BAMs) having compositions of $Zr_{55}Al_{10}Ni_{5}Cu_{30}$, were investigated under impact loading and quasi-static conditions. For experiments, a newly devised instrumented impact testing apparatus and the subsize Charpy specimens were used. The influences of loading rate and the notch shape on the fracture behavior of the Zr-based BAM were examined. The Zr-based BAMs showed an elastic deformation behavior without any plastic deformation on it before fracture. Most fracture energies were absorbed in the process of the crack initiation. The maximum load and fracture absorbed energy under quasi-static condition were larger than those under impact condition. However, there existed relatively insignificant notch shape effect. Fracture surfaces under impact loading were smoother than those under quasi-static loading. The absorbed fracture energy appeared differently depending on the extent of the vein-like pattern region due to the shear bands developed at the notch tip. It can be found that the fracture energy of the Zr-Al-Ni-Cu alloy is closely related with the development of shear bands during fracture.

  • PDF

초기 면내하중을 받는 복합적층판의 저속충격거동 및 손상해석 (Low-Velocity Impact Response and Damage Analysis of Composite Laminates Under Initial In-plane Loading)

  • 최익현
    • Composites Research
    • /
    • 제22권1호
    • /
    • pp.1-8
    • /
    • 2009
  • 본 논문에서는 면내하중을 받는 복합적층판의 저속충격거동과 손상을 해석하였다. 초기부터 존재하는 면내변형률을 고려하여 판의 변위장을 새롭게 가정하고, 이 가정된 변위장에 따른 적층판의 구조거동에 대한 유한요소방정식을 유도하였으며, 유한요소해석 프로그램을 코딩하였다. 유한요소해석을 수행하여 참고문헌의 수치해석 결과와 비교하였으며, 충격에너지는 동일하나 충격체의 질량과 속도가 다른 조건에 대해서도 해석하여 초기 면내하중의 영향을 분석하였다. 바닥으로부터 첫 번째 층간면에서의 잠재적인 층간분리 파손영역을 추정하여 초기 인내하중 및 충격조건에 따른 크기의 변화를 고찰하였다.