• Title/Summary/Keyword: Impact Characteristics

Search Result 6,051, Processing Time 0.034 seconds

Impact Power Characteristics as Behavior of Real Impact Source(Child) (실충격원(어린이)의 충격 발생행위에 따른 충격력 특성에 관한 연구)

  • Kim, Kyoung-Woo;Choi, Gyoung-Seok;Jeong, Young-Sun;Yang, Kwan-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.542-549
    • /
    • 2005
  • Impact sounds, such as those created by footsteps, the dropping of an object or the moving of furniture, can be a source of great annoyance In residential buildings. Running and jumping impact sound by child are one of the most irritating noises in an apartment buildings. It's necessary to know that the impact power characteristics of real impact source in an apartment buildings. This study aims to Investigate the impact power characteristics and impact power time of running and jumping by child. This study carried out investigation through the 159 children in school. The results of this study is that jumping impact power is greater than running impact power.

Impact Force Characteristics of Running and Jumping by Child (어린이 달리기와 뛰어내릴 때의 충격력 특성)

  • Kim, Kyoung-Woo;Choi, Hyun-Jung;Jeong, Young-Sun;Yang, Kwan-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.265-268
    • /
    • 2004
  • Impact sounds, such as those created by footsteps, the dropping of an object or the moving of furniture, can be a source of great annoyance in residential buildings. Running and jumping impact sound by child are one of the most irritating noises in an apartment buildings. It's necessary to know that the impact force characteristics of real impact source in an apartment buildings. This study aims to investigate the impact force characteristics and impact force time of running and jumping by child. This study cud out investigation through the 155 children in school. The results of this study is that jumping impact force is greater than running impact force but impact force time is lower than that.

  • PDF

Sound quality characteristics of heavy-weight impact sounds generated by impact ball (임팩트 볼에 의한 중량 충격음의 Sound Quality 특성)

  • You, Jin;Lee, Hye-Mi;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.671-674
    • /
    • 2006
  • Heavy-weight impact sounds generated by impact ball were classified according to the frequency characteristics on the equal loudness contours. Sound quality metrics such as Zwicker's loudness, sharpness, roughness of each classified impact sound were also measured. Loudness spectrum has been regarded as an indication of the characteristics difference of each classified impact sound. The adjectives in Korean expressing the sound quality characteristics of floor impact sounds were also investigated by adoptability and similarity tests. The group of the adjectives was used to evaluate the sound quality of floor impact sound by semantic differential test method.

  • PDF

Impact characteristics of the stainless sheet on the fixed boundary condition (고정형 조건에서의 스테인레스 강판의 충격 특성)

  • Ahn, Dong-Gyu;Moon, Kyung-Je;Jung, Chang-Gyun;Han, Gil-Young;Yang, Dong-Yol
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.48-53
    • /
    • 2007
  • The objective of this paper is to investigate the influence of impact conditions on the impact characteristics of the stainless sheet for the case of the fixed boundary conditions. In order to examine impact characteristics of the sheet, three-dimensional finite element analyses and impact tests have been performed. High speed tensile tests have been carried out to obtain strain-stress relationships including the effects of the strain rate. In order to improve an accuracy of the FE analysis, the hyper-elastic model and the damping factor have been introduced. The results of the FE analyses and the impact tests have been shown that the diameter of the impact head does not affect the absorption energy of the stainless sheet. In addition, it has been shown that the absorption rate of energy maintains almost $82.5\;\sim\;83.5\;%$ irrespective of the impact energy level and the diameter of the impact head. From the results of FE analyses, the variation of stress and strain energy in the stainless sheet has been quantitatively examined.

  • PDF

Effect of notch shape and hardness ratio on characteristics of impact fracture in dual phase steels (複合組織鋼의 衝擊破壞特性에 미치는 노치形狀 및 硬度比의 영향)

  • 김정규;유승원;김일현
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.46-53
    • /
    • 1988
  • Effect of Notch Shape and Hardness Ratio on Characteristics of Impact Fracture in Dual Phase Steels. In this study, it is investigated the effect of notch shape and hardness ratio on the characteristics of impact fracture in dual phase steels. The impact test was carried out at the temperature range from -40.deg. C to room temperature with Instrumented Charpy Impact Tester. The main results obtained are as follows; 1, The maximum impact bending strength (.sigma.$_{max}$) increases with the tensile strength. Also, the impact energy depends on .sigma.$_{max}$. 2, In room temperature, the impact energy depends on crack-initiation energy (E$_{i}$) in case of the high hardness ratio (R=3.4), whereas depends on crack-propagation energy (E$_{p}$) in case of the low hardness ratio (R=1.8) and the dependence of crack-initiation energy of the impact characteristics decreases with increasing test temperature. These phenomena are result from the difficulty of cleavage facet formation.ion.ion.

  • PDF

Comparison of Performance of the Exciter and Impact Hammer Test for Dynamic Characteristics Analysis of Floor Slabs (건물바닥 슬래브의 동특성 분석을 위한 가진기와 Impact Hammer의 성능 비교)

  • Ahn, Sang-Kyung;Moon, Yeong-Jong;Oh, Jung-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.117-120
    • /
    • 2007
  • The floor slabs of building structures are often subjected to the periodic force which is induced by vibrating machines or human activity(walking, jumping, running etc). These periodic forces cause excessive oscillation. In order to examine the dynamic characteristics of floor slabs, the dynamic characteristics test is accomplished. Generally, the Impact Hammer and Dynamic Exciter test is used to dynamic characteristics test. But the Impact Hammer test is not suitable to apply in building slabs. In this paper, It compared the performance of the Exciter and Impact Hammer test for dynamic characteristics analysis of floor slabs.

  • PDF

Analysis and Evaluation of Impact Sound Insulation of Concrete Floor Structures in Response to Characteristics of Heavy-weight Impact Sources (중량충격원에 따른 콘크리트 바닥판의 차음특성 분석 및 평가에 관한 연구)

  • Yoo, Seung-Yup;Yeon, Jun-Oh;Jeon, Jin-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.10
    • /
    • pp.1062-1068
    • /
    • 2009
  • In this study, the impact force levels of bang machine and impact ball were measured, then the heavy-weight impact sounds generated by the bang machine and impact ball were investigated. It was found that the heavy-weight impact sources generated through modal excitation, and the impact force of the impact ball was similar to that of real impact source. The heavy-weight impact sounds were also measured in the real apartments with different slab thickness and floor structures. The results showed that the floor impact sound levels in terms of $L_{iFmax,AW}$, generated by impact ball sounds were reduced by using the resilient isolators. The frequency characteristics of heavy-weight impact sounds at 125 and 250 Hz were consistent with the characteristics of impact force spectrum. However, the difference between the impact sounds and the impact forces were found at 63 and 500 Hz due to the resonance of the floor structure and flanking noise, respectively.

A Study on the Impact Absorbing Characteristics for Various Shape and Hardness of Cylindrical Rubber Structures (원주형 고무구조물의 형상과 재질변화에 따른 충격흡수특성)

  • Kim, Dong-Jin;Kim, Wan-Doo;Lee, Young-Shin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.441-446
    • /
    • 2004
  • Mechanical systems with rubber parts have been used widely in industry fields. The evaluation of the physical characteristics of rubber is important in rubber application. Rubber material is useful to machine component for excellent shock absorbing characteristics. The impact characteristics of rubber were examined by experimental and finite element method. The impact test was conducted with a free-drop type impact tester. The ABAQUS/Explicit was used for finite element analysis. The effects of thickness and diameter of the cylindrical rubber structures were investigated. The impact absorbing ratio of the rubber material was studied order to compare the peak reaction force of the specimen which only contained aluminum against the specimen with the inserted rubber part.

  • PDF

A Study on Low Velocity Impact Characteristics of DP 780 High Strength Steel Sheet with Thickness of 1.7 mm on the Free Boundary Condition Using Three-Dimensional Finite Element Analysis (3 차원 유한요소해석을 이용한 자유경계조건에서의 두께 1.7 mm DP780 고강도 강판의 저 속 충격 특성 분석)

  • Ahn, Dong-Gyu;Nam, Gyung-Heum;Seong, Dae-Yong;Yang, Dong-Yol;Lim, Ji-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.11
    • /
    • pp.46-56
    • /
    • 2010
  • The present research works investigated into the low velocity impact characteristics of DP 780 high strength steel sheet with 1.7 mm in thickness subjected to free boundary condition using three-dimensional finite element analysis. Finite element analysis was carried out via ABAQUS explicit code. Hyper-elastic model and the damping factor were introduced to improve an accuracy of the FE analysis. An appropriate FE model was obtained via the comparison of the results of the FE analyses and those of the impact tests. The influence of the impact energy and nose diameter of the impact head on the force-deflection curves, impact time, absorption characteristics of the impact energy, deformation behaviours, and stress-strain distributions was quantitatively examined using the results of FE analysis. The results of the FE analysis showed that the absorption rate of impact energy lies in the range of the 70.7-77.5 %. In addition, it was noted that the absorption rate of impact energy decreases when the impact energy increases and the nose diameter of the impact head decreases. The local deformation of the impacted region was rapidly increased when the impact energy was larger than 76.2 J and the nose diameter was 20 mm. A critical impact energy, which occur the instability of the DP780, was estimated using the relationship between the plastic strain and the impact energy. Finally, characteristics of the plastic energy dissipation and the strain energy density were discussed.

A STUDY ON IMPACT CHARACTERISTICS OF THE STACKING SEQUENCES IN CFRP COMPOSITES SUBJECTED TO FALLING-WEIGHT IMPACT LOADING

  • Im, K.H.;Park, N.S.;Kim, Y.N.;Yang, I.Y.
    • International Journal of Automotive Technology
    • /
    • v.4 no.4
    • /
    • pp.203-211
    • /
    • 2003
  • This paper describes a method for a falling weight impact test to estimate the impact energy absorbing characteristics and impact strength of CFRP (Carbon-fiber reinforced plastics) laminate plates based on considerations of stress wave propagation theory, which were converted to measurements of load and displacement verses time. The delamination area of impacted specimens for the different ply orientations was measured with an ultrasonic C-scanner to determine the correlation between impact energy and delamination area. The energy absorbed by a quasi-isotropic specimen having four interfaces was higher than that of orthotropic laminates with two interfaces. The more interfaces, the greater the energy absorbed. The absorbed energy of a hybrid specimen embedding GFRP (Glass-fiber reinforced plastics) layer was higher than that of normal specimens. Also, a falling weight impact tester was built to evaluate the characteristics and impact strength of CFRPs.