• 제목/요약/키워드: Impact Behavior...

검색결과 3,282건 처리시간 0.031초

강체 블록의 비선형 로킹진동특성에 관한 연구 (미끄럼이 있는 경우) (A Study on Nonlinear Rocking Vibration Characteristics of Rigid Block (In the Case of Sliding Occurrence))

  • 정만용;김정호;김선규;나기대;양인영
    • 한국안전학회지
    • /
    • 제15권1호
    • /
    • pp.1-10
    • /
    • 2000
  • This paper deals with rocking response behavior of rigid block structure subjected to horizontal excitation. A strict consideration of impact and sliding between the block and base is essential to investigate the rocking vibration characteristics because the rocking behavior were greatly influenced by the impact and sliding motion. Therefore, not only restitution coefficient between the block and base but also the energy dissipation rate which is associated with sliding motion, and the static and kinetic friction coefficient between those should be included in the modeling of rocking system. The analytic program was developed to be able to simulate the experimental responses of the block subjected to horizontal sinusoidal excitations. By using this program, rocking responses were numerically calculated by the nonlinear equations for rocking system. From the response simulation and rocking vibration experiment, the following results were obtained. The rocking responses are affected by the impact motion due to energy dissipation and friction and provide very complex behavior. The toppling condition of the block is also influenced by the impact motion and sliding motion.

  • PDF

접착영역모델을 이용한 클린칭 접합부의 해석 모델 설계 및 적용 (Analysis and Application of Mechanical Clinched Joint Using Cohesive Zone Model)

  • 황빛나;이찬주;이선봉;김병민
    • 소성∙가공
    • /
    • 제19권4호
    • /
    • pp.217-223
    • /
    • 2010
  • The objective of this study is to propose the FE model for mechanical clinched joint using cohesive zone model to analyze its failure behavior under impact loading. Cohesive zone model (CZM) is two-parameter failure criteria approach, which could describe the failure behavior of joint using critical stress and fracture toughness. In this study, the relationship between failure behavior of mechanical clinched joint and fracture parameters is investigated by FE analysis with CZM. Using this relationship, the critical stress and fracture toughness for tensile and shear mode are determined by H-type tensile test and lap shear test, which were made of 5052 aluminum alloy. The fracture parameters were applied to the tophat impact test to evaluate the crashworthiness. Compared penetration depth and energy absorption at the point where 50% of total displacement in result of FE analysis and experiment test for impact test, those has shown similar crashworthiness.

강섬유콘크리트구조물의 다양한 동적거동에 관한 실험적 연구 (Experimental Investigation on Dynamic Behavior of Steel Fiber Reinforced Concrete Structures)

  • 강보순
    • 한국철도학회논문집
    • /
    • 제13권4호
    • /
    • pp.431-439
    • /
    • 2010
  • 강섬유콘크리트는 터널의 숏크리트와 산업슬래브포장과 같은 적용 분야에서는 벌써 주목할 정도로 성공적인 반면에 일반적인 건설실무에서는 적용가능성이 주로 경제적인 이유로 해서 지금 까지는 부분적으로 제한되었다. 동적하중을 받는 특수한 분야 예를 들면 충격하중, 지진하중 및 철도의 피로하중등과 같은 동적하중이 작용하는 구조물에 대해서는 흥미로운 가능성을 열어 놓고 있다. 따라서 연구에서는 저자 연구소에서 수행한 다양한 동하중을 받는 구조물에 강섬유콘크리트를 적용할 수 있도록 강섬유콘크리트의 에너지 감쇠, 충격특성 및 피로거동 등을 실험적으로 수행한 연구결과로 보여준다.

비행입자의 열 에너지에 따른 NiTiZrSiSn 벌크 비정질 분말의 적층 거동 (Effect of Thermal Energy of In-Flight Particles on Impacting Behavior for NiTiZrSiSn Bulk Metallic Glass during Kinetic Spraying)

  • 윤상훈;김수기;이창희
    • Journal of Welding and Joining
    • /
    • 제25권3호
    • /
    • pp.37-44
    • /
    • 2007
  • Mechanical and thermomechanical properties of the bulk metallic glass (BMG) are so unique that the deformation behavior is largely dependent on the temperature and the strain rate. Impacting behavior of NiTiZrSiSn bulk metallic glass powder during kinetic spraying was investigated in this study. Considering the impact behavior of the BMG, the kinetic spraying system was modified and attached the powder preheating system to make the transition from the inhomogeneous deformation to the homogeneous deformation of impacting BMG particle easy BMG splat formation is considered from the viewpoint of the adiabatic shear instability. It is suggested that the impact behavior of bulk metallic glass particle is determined by the competition between fracture and deformation. The bonding of the impacting NiTiZrSiSn bulk amorphous particle was primarily caused by the temperature-dependent deformation and fracture (local liquid formation) behavior.

청소년의 음란물 이용이 성폭력 가해행동에 미치는 영향 : 가족지지의 조절효과를 중심으로 (The Effect of Pornography Use Among Adolescents on Violent Sexual Behavior and the Moderating Effect of Family Support)

  • 김재엽;최선아;임정수
    • Human Ecology Research
    • /
    • 제59권4호
    • /
    • pp.489-500
    • /
    • 2021
  • The purpose of this study was to identify the impact of pornography use among adolescents on their subsequent violent sexual behavior, and to ascertain the moderating effect of family support. The study was conducted with a sample of 2,087 Korean middle and high-school students. To analyze the data, a descriptive analysis, a correlation analysis, and a Poisson regression were conducted using SPSS 24.0. A Poisson regression was performed because the dependent variable, violent sexual behavior, was measured by the frequency of occurrence, and most responses were distributed at '0', indicating a non-normal distribution. The results indicated that 8.1% of adolescents admitted to having sexually violent experiences over the past year, with a relatively high rate of sexual harassment. Secondly, 53.3% of adolescents had used pornography over the past couple of years, with the highest percentage of use occurring via the Internet. Finally, pornography use among adolescents had a significant and direct impact on their sexually violent behavior, with family support playing a moderating role. This indicated that, for adolescents with a high level of family support, the impact of pornography usage on sexually violent behavior decreased. Based on these results, we discuss practical and policy interventions to prevent sexually violent behavior by adolescents.

윤리적 리더십이 안전 행동에 미치는 영향: 조직 신뢰와 조직 몰입의 순차적 매개 효과, 그리고 진정성 리더십의 조절 효과를 중심으로 (The Impact of Ethical Leadership on Safety Behavior: Focusing on the Sequential Mediating Effects of Organizational Trust and Organizational Commitment, and the Moderating Effects of Authentic Leadership)

  • 홍윤숙
    • 대한안전경영과학회지
    • /
    • 제25권2호
    • /
    • pp.175-185
    • /
    • 2023
  • Prior studies focusing on safety behavior have not given sufficient consideration to the potential impact exerted by different leadership styles. Of these various styles, my attention is specifically drawn to the influence of ethical leadership on safety behavior. In this paper, I delve into the influence of ethical leadership on safety behavior, shedding light on both the underlying mechanisms(mediators) and a significant contextual factor(moderator). I probe into the successive mediating roles of employees' trust in the organization and their commitment to it, within the context of the relationship between ethical leadership and safety behavior. Further, I posit that authentic leadership positively adjusts the connection between ethical leadership and organizational trust. My findings underscore that ethical leadership enhances employee safety behavior, facilitated by the chain mediation of trust in the organization and organizational commitment. Moreover, I discover that authentic leadership, as a positive moderator, magnifies the favorable impact of ethical leadership on organizational trust. This paper will also articulate the theoretical implications, practical applications, and limitations of the study.

Finite element analysis of RC walls with different geometries under impact loading

  • Husem, Metin;Cosgun, Suleyman I.;Sesli, Hasan
    • Computers and Concrete
    • /
    • 제21권5호
    • /
    • pp.583-592
    • /
    • 2018
  • Today, buildings are exposed to the effects such as explosion and impact loads. Usually, explosion and impact loads that act on the buildings such as nuclear power plants, airports, defense industry and military facilities, can occur occasionally on the normal buildings because of some reasons like drop weight impacts, natural gas system explosions, and terrorist attacks. Therefore, it has become important to examine the behavior of reinforced concrete (RC) structures under impact loading. Development of computational mechanics has facilitated the modeling of such load conditions. In this study, three kinds of RC walls that have different geometric forms (square, ellipse, and circle) and used in guardhouses with same usage area were modeled with Abaqus finite element software. The three configurations were subjected to the same impact energy to determine the geometric form that gives the best behavior under the impact loading. As a result of the analyses, the transverse impact forces and failure modes of RC walls under impact loading were obtained. Circular formed (CF) reinforced concrete wall which has same impact resistance in each direction had more advantages. Nonetheless, in the case of the impact loading occurring in the major axis direction of the ellipse (EF-1), the elliptical formed reinforced concrete wall has higher impact resistance.

탄소섬유복합재료의 충격 손상에 따른 파괴 인성과 AE 특성 (Fracture Toughness and AE Behavior of Impact-Damaged CFRP)

  • 이상국;남기우;오세규
    • 비파괴검사학회지
    • /
    • 제17권2호
    • /
    • pp.81-88
    • /
    • 1997
  • 탄소섬유강화복합재료(CFRP) 적층판에 비교적 낮은 에너지의 충격을 주어, 충격에 의해서 손상된 적층판을 사용하여 인장강도, 파괴 인성 및 AE 신호 특성에 미치는 충격 손상의 영향에 대하여 검토하였다. 충격손상재의 인장강도, 파괴 인성 및 AE-event count는 충격 속도와 박리 면적의 증가에 따라서 감소함을 알 수 있었다. 그리고 충격시험시에 발생한 박리 면적은 충격 속도와 비례하였다. 또한 적층 방법에 따른 손상재의 강도비와 파괴 인성비가 달라짐이 확인되어 복합재료의 내충격 설계시 손상량과 손상재의 파괴 인성 및 강도에 대한 정량적 평가를 AE 신호로부터 해석할 수 있음이 확인되었다.

  • PDF

GF/PE 복합재료의 충격파괴거동에 관한 연구 (A Study on the Impact Fracture Behavior of Glass Fiber Polyethylene Composites)

  • 엄윤성;최영근;양병춘;김형진;고성위
    • 수산해양기술연구
    • /
    • 제39권3호
    • /
    • pp.167-173
    • /
    • 2003
  • Many of researches regarding mechanical properties of composite materials are associated with humid environment and temperature. Especially the temperature is a very important factor influencing the design of thermoplastic composites. However, the effect of temperature on impact behavior of reinforced composites have not yet been fully explored. An approach which predicts critical fracture toughness G$_{IC}$ was performed by the impact test in this work. The main goal of this work is to study the effect of temperature and span of specimen supports on the results of Charpy impact test for GF/PE composite. The critical fracture energy and failure mechanism of GF/PE composites were investigated in the temperature range of $60^{\circ}C;to;-50^{\circ}C$ by the Charpy impact test. The critical fracture energy showed the maximum at the ambient temperature, and it tended to decrease as the temperature increased or decreased from the ambient temperature. The major failure mechanisms are the fiber matrix debonding, the fiber pull-out and/or delamination and the matrix deformation.n.

Axial impact behavior of confined concrete filled square steel tubes using fiber reinforced polymer

  • Zhang, Yitian;Shan, Bo;Kang, Thomas H.K.;Xiao, Yan
    • Steel and Composite Structures
    • /
    • 제38권2호
    • /
    • pp.165-176
    • /
    • 2021
  • Existing research on confined concrete filled steel tubular (CCFT) columns has been mainly focused on static or cyclic loading. In this paper, square section CCFT and CFT columns were tested under both static and impact loading, using a 10,000 kN capacity compression test machine and a drop weight testing equipment. Research parameters included bonded and unbonded fiber reinforced polymer (FRP) wraps, with carbon, basalt and glass FRPs (or CFRP, BFRP, and GFRP), respectively. Time history curves for impact force and steel strain observed are discussed in detail. Experimental results show that the failure modes of specimens under impact testing were characterized by local buckling of the steel tube and cracking at the corners, for both CCFT and CFT columns, similar to those under static loading. For both static and impact loading, the FRP wraps could improve the behavior and increase the loading capacity. To analyze the dynamic behavior of the composite columns, a finite element, FE, model was established in LS-DYNA. A simplified method that is compared favorably with test results is also proposed to predict the impact load capacity of square CCFT columns.