• 제목/요약/키워드: Impact Beam

검색결과 503건 처리시간 0.035초

Nonlinear finite element analysis of ultra-high performance fiber reinforced concrete beams subjected to impact loads

  • Demirtas, Gamze;Caglar, Naci;Sumer, Yusuf
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.81-92
    • /
    • 2022
  • Ultra-high performance fiber reinforced concrete (UHPFRC) is a composite building material with high ductility, fatigue resistance, fracture toughness, durability, and energy absorption capacity. The aim of this study is to develop a nonlinear finite element model that can simulate the response of the UHPFRC beam exposed to impact loads. A nonlinear finite element model was developed in ABAQUS to simulate the real response of UHPFRC beams. The numerical results showed that the model was highly successful to capture the experimental results of selected beams from the literature. A parametric study was carried out to investigate the effects of reinforcement ratio and impact velocity on the response of the UHPFRC beam in terms of midpoint displacement, impact load value, and residual load-carrying capacity. In the parametric study, the nonlinear analysis was performed in two steps for 12 different finite element models. In the first step, dynamic analysis was performed to monitor the response of the UHPFRC beam under impact loads. In the second step, static analysis was conducted to determine the residual load-carrying capacity of the beams. The parametric study has shown that the reinforcement ratio and the impact velocity affect maximum and residual displacement value substantially.

The effect of fiber reinforcement on behavior of Concrete-Filled Steel Tube Section (CFST) under transverse impact: Experimentally and numerically

  • Yaman, Zeynep
    • Structural Engineering and Mechanics
    • /
    • 제82권2호
    • /
    • pp.173-189
    • /
    • 2022
  • This study presents an experimental and numerically study about the effects of fiber reinforcement ratio on the behavior of concrete-filled steel tubes (CFST) under dynamic impact loading. In literature have examined the behavior of GFRP and FRP wrapped strengthened CFST elements impact loads. However, since the direction of potential impact force isn't too exact, there is always the probability of not being matched the impact force of the area where the reinforced. Therefore, instead of the fiber textile wrapping method which strengthens only a particular area of CFST element, we used fiber-added concrete-filled elements which allow strengthening the whole element. Thus, the effect of fiber-addition in concrete on the behavior of CFST elements under impact loads was examined. To do so, six simply supported CFST beams were constructed with none fiber, 2% fiber and 10% fiber reinforcement ratio on the concrete part of the CFST beam. CFST beams were examined under two different impact loads (75 kg and 225 kg). The impactors hit the beam from a 2000 mm free fall during the experimental study. Numerical models of the specimens were created using ABAQUS finite element software and validated with experimental data. The obtained results such as; mid-span displacement, acceleration, failure modes and energies from experimental and numerical studies were compared and discussed. Furthermore, the Von Misses stress distribution of the CFST beams with different ratio of fiber reinforcements were investigated numerically. To sum up, there is an optimum amount limit of the fiber reinforcement on CFST beams. Up to this limit, the fiber reinforcement increases the structural performances of the beam, beyond that limit the fiber reinforcement decreases the performances of the CFST beam under transverse impact loadings.

복합소재 교량용 방호울타리의 최적 적층 단면 도출을 위한 낙하 충돌시험 (The Fall Impact test for Extraction of Optimal Stacking Section of Composite Safety Barrier for Bridge)

  • 홍갑의;전신열;김기승;김승억
    • 복합신소재구조학회 논문집
    • /
    • 제2권1호
    • /
    • pp.1-7
    • /
    • 2011
  • 본 논문에서는 복합소재 방호울타리의 6가지 적층 단면에 대한 충돌시뮬레이션을 실시하여 최적 적층 단면을 결정하였다. 먼저 6가지 단면 형상에 대하여 설문 조사를 통하여 형상을 결정하였다. 결정된 보 단면에 대하여 6가지 적층설계를 하였다. 적층에는 CSM, DB, DBT, Roving 섬유를 사용하였다. LS-DYNA를 사용하여 수평 및 3:1 경사에 대한 복합소재 보를 모델링하였다. 직육면체 추 및 원통형 추를 사용하여 낙하 충돌 시뮬레이션을 실시하였다. 시뮬레이션결과를 비교 분석하여 최적 적층 단면을 도출하였다.

보와 판이론에 의한 보형상 복합재의 충격 거동에 관한 연구 (A Study on the Impact Behavior of the Beam-Like Laminated Composite by the Beam and Plate Theories)

  • 김문생;안국찬;김규남
    • 대한기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.643-652
    • /
    • 1989
  • 본 연구에서는 저자들에 의해 개발된 보와 판의 동적 유한 요소법으로 보형상을 지닌 적층 복합재의 형상비(길이/폭)와 적층 형태의 변화에 따른 충격 해석시 어느 이론의 결과가 더욱 적합한지에 대한 타당성 여부를 검토하고자 한다.

9%Ni 강의 전자빔 용접성에 관한 연구 (III) - 전자빔 용접부 기계적 특성과 조직 - (A Study on electron beam veldability of 9%Ni steels (III) - Microstructures and mechanical properties of welded joints -)

  • 김숙환;강정윤
    • Journal of Welding and Joining
    • /
    • 제15권4호
    • /
    • pp.116-125
    • /
    • 1997
  • Electron beam weldability of 9%Ni steels has been investigated to apply EBW to the construction of LNG storage tank. While mechanical properties of welded joints were satisfied by ASTM specification, impact energy of weld metal was as low as 27 - 55J at $-196^{\circ}C$. As the result of Ni wires inserted at the joint to be welded, Ni content of weld metal was increased to about 10%, resulting on the improvement of impact toughness to 110 ~ 120J at $-196^{\circ}C$. This improvement of impact toughness in weld metal was due to the formation of tempered martensite and retained austenite. Above results indicate that, if Ni content of weld metal was increased about 10% by Ni wires addition, electron beam welded 9%Ni steels weld metal had sufficient impact energy necessary for a LNG storage tank.

  • PDF

충격하중(衝擊荷重)을 받는 변단면(變斷面)보의 동적(動的) 응답해석(應答解析) (On the Dynamic Response of a Beam with Variable Section subject to Impact Load)

  • 최경식;장창두
    • 대한조선학회지
    • /
    • 제21권1호
    • /
    • pp.13-20
    • /
    • 1984
  • As the first step to the dynamic stress analysis of structures, transient responses of a Timoshenko beam with variable section subject to impact load are analyzed. According to the various characteristics of impact load, time histories of the transient response of Timoshenko beam with general boundary conditions are obtained and compared with those of one degree of freedom system. Numerical solutions of the governing equations of motion are calculated by adopting the equivalent lumped-mass system and the finite difference method. It is found that the dynamic responses of Timshenko beam depend on the effect of concentration and location of impact load. As a result, increasing tendency of fluctuation in dynamic response, especially in bending moment, is found according to the increase of load concentration factor in time and space.

  • PDF

자동차 범퍼빔 적용 차세대 재료기술의 개발 (The Development of Material Technology Applied to Bumper Beam)

  • 이상제;박진수;구도회;정병훈
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.206-215
    • /
    • 2002
  • It is to be classified into friendly environment and safety problems, as a main technology development of the recent automotive industry. As these tendency, lots of automobile companies focus on a reduction of fuel expenses and strengthen of crash safety using high strength steel. In this study advanced technologies such as tailored blanks, aluminum extrusion and high strength steel forming applied to bumper beam will be described. As a result of impact analysis and an actual impact test, in terms of beam performance and a possibility fur the mass production will be discussed.

Dynamic response of a hinged-free beam subjected to impact at an arbitrary location along its span with shear effect

  • Zhang, Y.;Yang, J.L.
    • Structural Engineering and Mechanics
    • /
    • 제26권5호
    • /
    • pp.483-498
    • /
    • 2007
  • In case of considering the shear effect, the complete solutions are obtained for dynamic plastic response of a rigid, perfectly plastic hinged-free beam, of which one end is hinged and the other end free, subjected to a transverse strike by a travelling rigid mass at an arbitrary location along its span. Special attention is paid to new deformation mechanisms due to shear sliding on both sides of the rigid mass and the plastic energy dissipation. The dimensionless numerical results demonstrate that three parameters, i.e., mass ratio, impact position of mass, as well as the non-dimensional fully plastic shear force, have significant influence on the partitioning of dissipated energy and failure mode of the hingedfree beam. The shear effect can never be negligible when the mass ratio is comparatively small and the impact location of mass is close to the hinged end.

충격성분을 갖는 보의 진동에 대한 비선형 해석 (Nonlinear Analysis of Beam Vibration with Impact)

  • 이봉현;최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.455-460
    • /
    • 2000
  • Impact occurs when the vibration amplitude of a mechanical component exceeds a given clearance size. Examples of these mechanical systems include impact dampers, gears, link mechanism, rotor rub, and so on. The vibration due to impact has strong non-linear characteristics, which cannot be predicted by usual linear analysis. The designs of mechanical systems with impacts should be done on the basis of overall dynamic characteristics of the systems. In this paper, the nonlinear behaviors of a beam with a periodically moving support and a rigid stop are investigated numerically and experimentally. The beam vibration with impact is modeled by the equations of motion containing piecewise linear restoring forces and by the coefficient of restitution, respectively. Experimental and numerical results show jump phenomena and higher-harmonic vibrations. The effects between the increase of stiffness during impact and the coefficient of restitution are investigated through the comparison of the experimental and numerical results.

  • PDF

Impact identification and localization using a sample-force-dictionary - General Theory and its applications to beam structures

  • Ginsberg, Daniel;Fritzen, Claus-Peter
    • Structural Monitoring and Maintenance
    • /
    • 제3권3호
    • /
    • pp.195-214
    • /
    • 2016
  • Monitoring of impact loads is a very important technique in the field of structural health monitoring (SHM). However, in most cases it is not possible to measure impact events directly, so they need to be reconstructed. Impact load reconstruction refers to the problem of estimating an input to a dynamic system when the system output and the impulse response function are usually known. Generally this leads to a so called ill-posed inverse problem. It is reasonable to use prior knowledge of the force in order to develop more suitable reconstruction strategies and to increase accuracy. An impact event is characterized by a short time duration and a spatial concentration. Moreover the force time history of an impact has a specific shape, which also can be taken into account. In this contribution these properties of the external force are employed to create a sample-force-dictionary and thus to transform the ill-posed problem into a sparse recovery task. The sparse solution is acquired by solving a minimization problem known as basis pursuit denoising (BPDN). The reconstruction approach shown here is capable to estimate simultaneously the magnitude of the impact and the impact location, with a minimum number of accelerometers. The possibility of reconstructing the impact based on a noisy output signal is first demonstrated with simulated measurements of a simple beam structure. Then an experimental investigation of a real beam is performed.