• 제목/요약/키워드: Impact Angle Control

검색결과 105건 처리시간 0.035초

한국형모델의 신규 GNSS RO 자료 활용과 품질검사 개선에 관한 연구 (A Study on Improvement of the Use and Quality Control for New GNSS RO Satellite Data in Korean Integrated Model)

  • 김은희;조영순;이은희;이용희
    • 대기
    • /
    • 제31권3호
    • /
    • pp.251-265
    • /
    • 2021
  • This study examined the impact of assimilating the bending angle (BA) obtained via the global navigation satellite system radio occultation (GNSS RO) of the three new satellites (KOMPSAT-5, FY-3C, and FY-3D) on analyses and forecasts of a numerical weather prediction model. Numerical data assimilation experiments were performed using a three-dimensional variational data assimilation system in the Korean Integrated Model (KIM) at a 25-km horizontal resolution for August 2019. Three experiments were designed to select the height and quality control thresholds using the data. A comparison of the data with an analysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) integrated forecast system showed a clear positive impact of BA assimilation in the Southern Hemisphere tropospheric temperature and stratospheric wind compared with that without the assimilation of the three new satellites. The impact of new data in the upper atmosphere was compared with observations using the infrared atmospheric sounding interferometer (IASI). Overall, high volume GNSS RO data helps reduce the RMSE quantitatively in analytical and predictive fields. The analysis and forecasting performance of the upper temperature and wind were improved in the Southern and Northern Hemispheres.

충돌각 구속조건을 위한 보조루프 합성을 통한 준최적 호밍 유도법칙 (Suboptimal Homing Guidance Law by Synthesis of the Aided Loop for Impact Angle Constraint)

  • 이진익
    • 한국항공우주학회지
    • /
    • 제35권11호
    • /
    • pp.1006-1012
    • /
    • 2007
  • 본 논문에서는 호밍 유도 비행체의 종말에서의 충돌각 구속조건을 고려한 준 최적 호밍 유도법칙을 제안한다. 기존의 일반 LQ 최적 제어와는 달리 추가적인 구속조건을 위해 여분의 자유도를 확보하도록 보조 루프를 도입하고, 도입된 부가항을 고려하여 Schwartz 부등식으로부터 최적 제어 입력을 설계한다. 비행체에 인가되는 전체 유도 명령은 최적해와 더불어 부가항을 합성한 준최적 유도법칙의 구조를 갖는다. 또한 제안한 유도법칙의 여러 가지 특성을 고찰하고 기존의 유도법칙들과 비교 연구도 수행한다. 다양한 시뮬레이션 결과를 통하여 제안한 유도법칙의 타당성을 보여준다.

수중 운동체를 위한 측면 공격 유도 기법 (Development of side attack guidance law for an underwater vehicle)

  • 이보형;이장규;한형석;김병수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.533-539
    • /
    • 1993
  • In this paper, two side-attack guidance laws for an underwater vehicle are considered. In order to find the guidance command, we first make use of the optimal guidance law with terminal impact angle constraint. Secondly, the optimal solution of tracking problem is used. This paper shows some brief theory which is used in deriving the side-attack guidance laws, and the method of computing these guidance laws. Simulations on underwater vehicle for a constant moving target prove that the suggested side-attack guidance laws have enhanced side attack performance over the optimal guidance law with miss distance weighting only. Furthermore, from simulation results. we conclude that the guidance law using the optimal solution of tracking problem is more efficient for the side-attack guidance than the optimal guidance law with terminal impact angle constraint.

  • PDF

Trajectory Optimization in Consideration of Inertial Navigation Errors

  • Ryoo, Chang-Kyung;Kim, Jong-Ju;Cho, Hang-Ju
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.125.2-125
    • /
    • 2001
  • Inertial navigation error is the major source of miss distance when only the inertial navigation system is used for guidance, and tend to monotonically increase if the flight time is small compared to the Schuler period. Miss distance due to these inertial navigation errors, therefore, can be minimized when a missile has the minimum time trajectory. Moreover, vertical component of navigation error becomes null if he impact angle to a surface target approaches to 90 degrees. In this paper, the minimum time trajectories with the steep terminal impact angle constraint are obtained by using CFSQP 2.5, and their properties are analyzed to give a guideline for he construction of an effective guidance algorithm for short range tactical surface-to-surface missiles.

  • PDF

PNG의 항법상수와 이와 관련된 최적제어 문제 (Navigation constants in PNG law and the associated optimal control problems)

  • 조항주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.578-583
    • /
    • 1992
  • In this paper, we show that various navigation constant values in PNG law can result in as optimal gains when we introduce proper time-varying weighting functions into the cost function of an optimal control problem. we then apply this idea to the guidance problem where we are required to achieve a given impact angle as well as the zero miss distance. As a result, we obtain a set of optimal guidance laws each of which could be related to a navigation constant in PNG. Some basic properties of these guidance laws are also presented.

  • PDF

표적 가관측성 향상을 위한 Time-to-go 다항식 유도법칙 (Time-to-go Polynomial Guidance Law for Target Observability Enhancement)

  • 김태훈;이창훈;탁민제
    • 한국항공우주학회지
    • /
    • 제39권1호
    • /
    • pp.16-24
    • /
    • 2011
  • 본 논문에서는 충돌각 및 종말 가속도를 제어하는 $t_{go}$-다항식 유도기법을 기반으로 표적 가관측성을 향상시키는 새로운 형태의 $t_{go}$-다항식 유도법칙을 제안한다. 제안한 유도법칙은 기존 $t_{go}$-다항식 유도명령에 거리오차와 비례이득으로 구성된 부가항을 합한 간단한 형태로서, 비례이득을 변화시킴에 따라 비행궤적의 형태를 결정할 수 있다. 또한 이는 $t_{go}$-다항식 유도가 가지는 충돌각 및 가속도 제어 특성을 그대로 유지한다. 본 연구에서는 제안한 유도법칙의 닫힌 해를 구하여 유도 특성을 고찰하고, 다양한 시뮬레이션을 수행하여 유도법칙의 타당성을 보이도록 한다.

한다리 로봇의 뜀뛰기 패턴 생성에 관한 실험적 접근 (Experimental Approach to Hopping Pattern Generation for One-legged Robot)

  • 조백규
    • 제어로봇시스템학회논문지
    • /
    • 제18권9호
    • /
    • pp.837-844
    • /
    • 2012
  • We introduce a pattern generation method for a hopping one-legged robot and verify it experimentally. The pattern is derived from the liner and angular momentum of a COM (Center of Mass), which are pre-scheduled. Because of the relation between angular velocities of joints and momemtums of the COM, joint angle trajectories are easily obtained. In addition, the landing impact force is reduced by only adjusting the landing timing. In the experiment, the one-legged robot hops in place with 0.06 s of flying time, and makes continuous hopping. Based on our experimental results, the proposed method can be applied to hopping and running of biped humanoid robots.

소수성 텍스쳐 표면에 충돌한 단일 액적의 퍼짐 및 고착 특성 (Spreading and Deposition Characteristics of a Water Droplet Impacting on Hydrophobic Textured Surfaces)

  • 이재봉;문주현;이성혁
    • 한국분무공학회지
    • /
    • 제17권1호
    • /
    • pp.14-19
    • /
    • 2012
  • The present study conducts experimental investigation on spreading and deposition characteristics of a $4.3{\mu}l$ de-ionized (DI) water droplet impacting upon aluminum (Al 6061) flat and textured surfaces. The micro-textured surface consisted the micro-hole arrays (hole diameter: $125{\mu}m$, hole depth: $125{\mu}m$) fabricated by the conventional micro-computer numerical control (${\mu}$-CNC) milling machine process. We examined the surface effect of texture area fraction ${\varphi}_s$ ranging from 0 to 0.57 and impact velocity of droplet ranging from 0.40 m/s to 1.45 m/s on spreading and deposition characteristics from captured images. We used a high-speed camera to capture sequential images for investigate spreading characteristics and the image sensor to capture image of final equilibrium deposition droplet for analyze spreading diameter and contact angle. We found that the deposition droplet on textured surfaces have different wetting states. When the impact velocity is low, the non-wetting state partially exists, whereas over 0.64 m/s of impact velocity, totally wetting state is more prominent due to the increase kinetic energy of impinging droplet.

Attitude control in spacecraft orbit-raising using a reduced quaternion model

  • Yang, Yaguang
    • Advances in aircraft and spacecraft science
    • /
    • 제1권4호
    • /
    • pp.427-441
    • /
    • 2014
  • Orbit-raising is an important step to place spacecraft from parking orbits into working orbits. Attitude control system design is crucial in the success of orbit-raising. Several text books have discussed this design and focused mainly on the traditional methods based on single-input single-output (SISO) transfer function models. These models are not good representations for many orbit-raising control systems which have multiple thrusters and each thruster has impact on the attitude defined by all outputs. Only one published article is known to use a more suitable multi-input multi-output (MIMO) Euler angle model in spacecraft orbit-raising attitude control system design. In this paper, a quaternion based MIMO model for the orbit-raising attitude control system design is proposed. The advantages of using quaternion based model for orbit-raising control system designs are (a) there is no need for mathematical transformations because the attitude measurements are normally given by quaternion, (b) quaternion based model does not depend on rotational sequences, which reduces the chance of human errors, and (c) the singular point of reduced quaternion model is the farthest from the operational point where linearization is performed. We will show that performance of quaternion model based design will be as good as the performance of Euler angle model based design for orbit-raising problem.

OPTIMAL IMPACT ANGLE CONSTRAINED GUIDANCE WITH THE SEEKER'S LOCK-ON CONDITION

  • PARK, BONG-GYUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제19권3호
    • /
    • pp.289-303
    • /
    • 2015
  • In this paper, an optimal guidance law with terminal angle constraint considering the seeker's lock-on condition, in which the target is located within the field-of-view (FOV) and detection range limits at the end of the midcourse phase, is proposed. The optimal solution is obtained by solving an optimal control problem minimizing the energy cost function weighted by a power of range-to-go subject to the terminal constraints, which can shape the guidance commands and the missile trajectories adjusting guidance gains of the weighting function. The proposed guidance law can be applied to both of the midcourse and terminal phases by setting the desired relative range and look angle to the final interception conditions. The performance of the proposed guidance law is analyzed through nonlinear simulations for various engagement conditions.