• Title/Summary/Keyword: Impact

Search Result 37,120, Processing Time 0.055 seconds

Experimental investigation of impact behaviour of shear deficient RC beam to column connection

  • Murat, Aras;Tolga, Yilmaz;Ozlem, Caliskan;Ozgur, Anil;R. Tugrul, Erdem;Turgut, Kaya
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.619-632
    • /
    • 2022
  • Reinforced concrete (RC) structures may be subjected to sudden dynamic impact loads such as explosions occurring for different reasons, the collision of masses driven by rockfall, flood, landslide, and avalanche effect structural members, the crash of vehicles to the highway and seaway structures. Many analytical, numerical, and experimental studies focused on the behavior of RC structural elements such as columns, beams, and slabs under sudden dynamic impact loads. However, there is no comprehensive study on the behavior of the RC column-beam connections under the effect of sudden dynamic impact loads. For this purpose, an experimental study was performed to investigate the behavior of RC column-beam connections under the effect of low-velocity impact loads. Sixteen RC beam-column connections with a scale of 1/3 were manufactured and tested under impact load using the drop-weight test setup. The concrete compressive strength, shear reinforcement spacing in the beam, and input impact energy applied to test specimens were taken as experimental variables. The time histories of impact load acting on test specimens, accelerations, and displacements measured from the test specimens were recorded in experiments. Besides, shear and bending crack widths were measured. The effect of experimental variables on the impact behavior of RC beam-column connections has been determined and interpreted in detail. Besides, a finite element model has been established for verification and comparison of the experimental results by using ABAQUS software. It has been demonstrated that concrete strength, shear reinforcement ratio, and impact energy significantly affect the impact behavior of RC column-beam connections.

Theoretical Reflections on the Calculation of Development Impact Fees (도시개발부담금 산정에 관한 이론적 고찰)

  • Yeon-Taek Ryu
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.55-71
    • /
    • 2023
  • This paper theoretically explores the calculation of development impact fees focusing on urban growth, new urban development, developer, urban planner, housing, real estate market, community planning, community financing, local government, land use planning, public facilities, and development cost. Many questions related to who bears the burden of paying impact fees beg for answers based on empirical analysis. Those questions involve the extent to which landowners bear the burden, the effect of different levels of impact fees on the socioeconomic mix of communities, the distribution of fiscal benefits within a region where urban communities assess different levels of impact fees, and the preparedness of urban communities to accommodate development displaced by impact fees. Broader questions also relate to how urban and regional form is affected by differential application of impact fees throughout an area and whether money gained from the impact fees makes regional growth more or less efficient. Who ultimately pays development impact fees? There has been little empirical evaluation of how the market responds to development impact fees, but there is considerable information to suggest that, on the whole, the occupants - residents and users - pay the majority of the development impact fees.

A Case Study on the Health Impact Assessment of Residential Development Projects (주거지 개발사업에 대한 건강영향평가 사례 연구)

  • Shin, Moonshik;Dong, Jongin;Ha, Jongsik
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.5
    • /
    • pp.391-402
    • /
    • 2020
  • Health Impact Assessment based on municipal law is performed and written in the sanitary and public health part in the current environmental impact assessment. Residential development projects such as housing site development etc., are not subject to health impact assessment under Article 13 of the Environmental Health Act. However, health impact assessment is conducted partially based on the review that health impact assessment targets which are identified among substances emitted from pollutants nearby industrial complexes should be assessed risk (including carcinogenic and non-carcinogenic) at the stage of the environmental impact assessment consultation. Although residential development projects do not have plans for pollutant emitting facilities that emit hazardous air pollutants, there is a possibility that residents might be affected by pollutants from industrial complex near residential area in the future. In this study, Health impact assessment was conducted to examine the impact on residents in planned areas by analyzing previous residential development projects. We predicted future impact by using the literature survey results on surrounding area (case1) and conducting contribution analysis (case2) and predicting exposure concentration of carcinogenic substances applying Atmospheric Diffusion Model (AERMOD). By this study, we concluded that applying on-site survey, contribution analysis and prediction of exposure concentration by using AERMOD complementarily will be effective to assess the health impact to the receptors by pollutants from industrial complexes near the planned zone.

Experimental Study on Side Impact Characteristics for Automotives Door Module (자동차용 도어 모듈의 측면 충돌특성에 관한 실험적 연구)

  • Jeon, S.J.;Kim, M.H.;Lee, G.B.;Lee, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.318-318
    • /
    • 2009
  • The door stiffness is one of the important factors side impact. Generally, the researches have been conducted on the assembled door module. This study is to analysis the side impact characteristics for automotives door module. The impact characteristics have been determined by door module side impact test machine. To determine the initial, intermediate and peak crush resistances use the plot of load versus displacement and obtain the integral of the applied load with respect to the crush distances specified below for each door tested. The initial crush resistance is the average force required to deform the door through the initial 6 inches of crush. The intermediate crush resistance is the average force required to deform the door through the initial 12 inches of crush. The peak crush resistance will be directly obtained from the plot of load versus displacement since it is the largest force required to deform the door through the entire 18 inches crush distance. The data are used to determine if a specific vehicle or item of automotives equipment meets the minimum performance requirements of the subject Federal Motor Vehicle Safety Standard(FMVSS). FMVSS Static 214, Side impact protection, specifies performance requirements for protection of occupants in side impact crashes.

  • PDF

Response of triceratops to impact forces: numerical investigations

  • Chandrasekaran, Srinivasan;Nagavinothini, R.
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.349-368
    • /
    • 2019
  • Triceratops is one of the new generations of offshore compliant platforms suitable for ultra-deepwater applications. Apart from environmental loads, the offshore structures are also susceptible to accidental loads. Due to the increase in the risk of collision between ships and offshore platforms, the accurate prediction of structural response under impact loads becomes necessary. This paper presents the numerical investigations of the impact response of the buoyant leg of triceratops usually designed as an orthogonally stiffened cylindrical shell with stringers and ring frames. The impact analysis of buoyant leg with a rectangularly shaped indenter is carried out using ANSYS explicit analysis solver under different impact load cases. The results show that the shell deformation increases with the increase in impact load, and the ring stiffeners hinder the shell damage from spreading in the longitudinal direction. The response of triceratops is then obtained through hydrodynamic response analysis carried out using ANSYS AQWA. From the results, it is observed that the impact load on single buoyant leg causes periodic vibration in the deck in the surge and pitch degrees of freedom. Since the impact response of the structure is highly affected by the geometric and material properties, numerical studies are also carried out by varying the strain rate, and the location of the indenter and the results are discussed.

Establishment of an Occupant Analysis modeling for Automobile Side Impact Using ATB Software (ATB 소프트웨어를 이용한 측면충돌시 승랙거동해석 모델링의 확립 및 분석)

  • 임재문;최중원;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.85-96
    • /
    • 1996
  • Most protection systems such as seat belts and airbags are not effective means for side structure. There has been significant effort in the automobile industries in seeking other protective methods, such as stiffer structure and padding on the door inner panel. Therefore, a car-to-car side impact model has been developed using ATB occupant simulation program and validated for test data of the vehicle. Compared to the existing side impact models, the developed model has a more detailed vehicle side structure representation for the more realistic impact response of the door. This model include impact bar which effectively increases the side structure stiffness without reduction of space between the occupant and the door and padding for absorbing impact energy. The established model is applied to a 4-door vehicle. The parameter study indicated that a stiffer impact bar would reduce both the acceleration-based criteria, such as thoracic trauma index: TTI(d), and deformation-based criteria, such as viscous criterion(VC). Padding on the door inner panel would reduce TTI(d) while VC gives the opposite indication in a specified thickness range. For a 4-door vehicle, the stiffness enhancement of B-pillar is more beneficial than that of A-pillar for occupant injury severity indices.

  • PDF

Data for EIA and Its Presentation in Korea (한국의 EIA 자료와 그의 활용)

  • Lee, Hyoun-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.2 no.2
    • /
    • pp.73-83
    • /
    • 1993
  • Increasing concern for the environment in Korea has led to the demand that major policies and large-scale development projects be subjected to detailed impact assessment. This paper reports on the state of data related to the prediction of the environmental impact (EIA) to emphasize the importance of data quality. Environmental impact statements (EIS) consulted with the Ministry of Environment of Korea were analyzed from 1981 through 1992. Many of assessors used existing data and collected supplementary data from field survey. Most of the results of EIA are presented directly or summarized on maps and as graphics. For the national purpose, large source of quality-controlled data such as atmospheric data have been developed, However, there are the deficiency in data to analyze the impact of human activity, and data gaps and incompatibilities among systems. Consequently, the development of data bank systems including computer database and remotely-sensed satellite data is required to improve the quality of data which are relevant to EIA. The data bank system should be organized meaningfully in minimum time with a least cost, and measurement standards must be made explicit. Geographical information systems (GIS) are applicable to the graphic presentation or to the impact prediction model.

  • PDF

Probabilistic Approach for Fatigue Life of Composite Materials with Impact-Induced Damage (충격손상 복합재료의 피로수명에 대한 통계적 해석 연구)

  • Kang, Ki-Weon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3148-3154
    • /
    • 2010
  • This paper presents the probabilistic analysis for fatigue life of Glass/Epoxy laminates with impact-induced damage. For this, a series of impact tests were perfomed on the Glass/Epoxy laminates using instrumented impact testing machine. Then, tensile and fatigue tests carried out so as to generate post-impact residual strength and fatigue life. Two Parameter Weibull distribution was used to fit the residual strength and fatigue life data of Glass/Epoxy composite laminates. The residual strength was affected by impact energy and their variance decreased with increasing of impact energy. The fatigue life of impacted laminates was greatly reduced by impact energy and this trend depended on applied stress amplitude. Additionally, the variation of fatigue life was gradually decreased with the applied stress amplitude.

A 3D FEA Model with Plastic Shots for Evaluation of Peening Residual Stress due to Multi-Impacts (다중충돌 피닝잔류응력 평가를 위한 소성숏이 포함된 3차원 유한요소해석 모델)

  • Kim, Tae-Hyung;Lee, Hyungy-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.642-653
    • /
    • 2008
  • In this paper, we propose a 3-D finite element (FE) analysis model with combined physical behavior and kinematical impact factors for evaluation of residual stress in multi-impact shot peening. The FE model considers both physical behavior of material and characteristics of kinematical impact. The physical parameters include elastic-plastic FE modeling of shot ball, material damping coefficient, dynamic friction coefficient. The kinematical parameters include impact velocity and diameter of shot ball. Multi-impact FE model consists of 3-D symmetry-cell. We can describe a certain repeated area of peened specimen under equibiaxial residual stress by the cell. With the cell model, we investigate the FE peening coverage, dependency on the impact sequence, effect of repeated cycle. The proposed FE model provides converged and unique solution of surface stress, maximum compressive residual stress and deformation depth at four impact positions. Further, in contrast to the rigid and elastic shots, plastically deformable shot produces residual stresses closer to experimental solutions by X-ray diffraction. Consequently, it is confirmed that the FE model with peening factors and plastic shot is valid for multi-shot peening analyses.

Experimental Study on Impact Loads Acting on Free-falling Modified Wigley

  • Hong, Sa-Young;Kim, Young-Shik;Kyoung, Jo-Hyun;Hong, Seok-Won;Kim, Yong-Hwan
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.151-159
    • /
    • 2012
  • The characteristics of an impact load and pressure were experimentally investigated. Drop tests were carried out using a modified Wigley with CB = 0.56. The vertical force, pressures, and vertical accelerations were measured. A 6-component load cell was used to measure the forces, piezo-electric sensors were used to capture the impact pressure, and strain-gauge type accelerometers were used to measure the vertical accelerations. A 50-kHz sampling rate was applied to capture the peak values. The repeatability of the measured data was confirmed and the basic characteristics of the impact load and pressure such as the linearity to the falling height were observed for all of the measurements. A simple formula was derived to extract the physical impact load from the measured force based on a simple mass-sensor-mass diagram, which was validated by comparing impact forces with existing data using the mathematical model of Faltinsen and Chezhian (2005). The effects of the elasticity of the model and change in acceleration during the water entry were investigated. It is interesting to observe that the impact loads occurred and reached peak values at the same time duration after water entry for all drop heights.