• Title/Summary/Keyword: Immunocytochemical localization

Search Result 36, Processing Time 0.031 seconds

Molecular and Cellular Studies of Seed Storage Proteins from Rice and Wheat

  • Kim, Woo-Taek
    • Applied Biological Chemistry
    • /
    • v.32 no.1
    • /
    • pp.64-72
    • /
    • 1989
  • Near full length cDNA clones encoding the rice seed storage protein, prolamine, were isolated and divided into two homology classes based on cross-hybridization and DNA sequencing analysis. These cDNA clones contain a single open reading frame encoding a putative rice prolamine precursor(M.W.=17,200) possessing atypical 14 amino acid signal peptide. Clones of these two homology classes diverge mainly by insertions/deletions of short nucleotide stretches and point mutations. The deduced primary structures of both types of prolamine polypeptides are devoid of any major tandem repetitive sequences, a feature prevalent in other cereal prolamines. No significant homology teas detected between the rice prolamine and other cereal prolamines, indicating that the rice gene evolved from a different ancestor that gave rise to other cereal prolamine genes. Developing wheat and rice endosperms were examined using ultrathin sections prepared from tissues harvested at various days after flowering. By immunocytochemical localization techniques, wheat prolamines are localized within vesicles from Golgi apparatus and in homogeneous regions of protein bodies. The involvement of the goli apparatus in the packaging of wheat prolamines into protein bodies indicates a pathway which differs from the mode of other cereal prolamines and resembles the mechanism employed for the storage of rice glutelin and legume globulins.

  • PDF

Ultrastructural Localization of GABAergic Neuronal Components in the Dog Basilar Pons (개의 교핵내 GABA성 신경세포 성분의 미세구조적 위치관찰)

  • Lee, Hyun-Sook
    • Applied Microscopy
    • /
    • v.25 no.1
    • /
    • pp.65-74
    • /
    • 1995
  • An immunocytochemical study of GABA-positive neuronal elements was performed at the electron microscopic level to examine subcellular distribution of the inhibitory neurotransmitter in the dog basilar pons. Electron-dense reaction product was observed in neuronal somata and dendritic processes. One or more unlabeled axon terminals made asymmetric synaptic contacts with these GABAergic somatic and dendritic profiles. A large number of GABA-positive axon terminals were also observed. They made symmetric as well as asymmetric synaptic contacts with unlabeled dendritic profiles. In axo-axonic synapses, postsynaptic axon-like processes were consistently GABA-immunoreactive. These observations suggest that the inhibitory local circuit neurons in the dog basilar pons play a major role in cerebro-ponto-cerebellar circuitry by integrating various afferent inputs and conveying them into the cerebellar cortex and the deep cerebellar nuclei.

  • PDF

Localization of the SALMFamide neuropeptides in the starfish $Marthasterias$ $glacialis$

  • Yun, Sang-Seon;Thorndyke, Michael
    • Animal cells and systems
    • /
    • v.16 no.2
    • /
    • pp.114-120
    • /
    • 2012
  • In echinoderms, the SALMFamide neuropeptides sharing the SxL/FxFamide motif seem widespread throughout the phylum and may be important signalling molecules that mediate various physiological functions. Recent identification of S1 and its analogues, MagS3 and MagS4, along with the S2 analogue, MagS2 from the starfish $Marthasterias$ $glacialis$, indicated that SALMFamides in the class Asteroidea are more diverse than previously thought. Further, isolation of the neuropeptides from the radial nerve cord and studies on pharmacological actions of the neuropeptides on the cardiac stomach warrant studies on the tissue distributions of these peptides in both the nervous and digestive systems. In the present study, antisera raised against an S1 analogue, KYSALMFamide, and an S2 analogue, KYSGLTFamide, were used to localize the distribution patterns of the S1- and S2-like immunoreactivities (S1-IR/S2-IR) in the nervous and digestive systems of the starfish. In the nervous system, cell bodies in the ectoneural part were immunostained for both S1 and S2 peptides, while in the digestive system, the basiepithelial plexus and mucosal cell bodies were immunoreactive. These immunocytochemical data support the notion that the SALMFamides may play a neuroendocrine role in mediating feeding behaviour of the starfish. Further studies including identification of peptide binding sites and differential expression pattern of mRNAs encoding the peptides are required to elucidate their physiological functions.

Differential Intracellular Localization of Mitotic Centromere-associated Kinesin (MCAK) During Cell Cycle Progression in Human Jurkat T Cells (인체 Jurkat T 세포에 있어서 세포주기에 따른 MCAK 단백질의 세포 내 위치변화)

  • Jun Do Youn;Rue Seok Woo;Kim Su-Jung;Kim Young Ho
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.253-260
    • /
    • 2005
  • Mitotic centromere-associated kinesin (MCAK), which is a member of the Kin I (internal motor domain) subfamily of kinesin-related proteins, is known to play a role in mitotic segregation of chromosome during M phase of the cell cycle. In the present study, we have produced a rat polyclonal antibody using human MCAK (HsMCAK) expressed in E. coli as the antigen. The antibody specifically recognized the HsMCAK protein (81 kDa), and could detect its nuclear localization in human Jurkat T cells and 293T cells by Western blot analysis. The specific stage of the cell cycle was obtained through blocking by either hydroxyl urea or nocodazole and subsequent releasing from each blocking for 2, 4, and 7 h. While the protein level of HsMCAK reached a maximum level in the S phase with slight decline in the $G_{2}-M$ phase, the electrophoretic mobility shift from $p81^{MCAK}\;to\;p84^{MCAK}$ began to be induced in the late S phase and reached a maximum level in the $G_{2}/M $ phase, and then it disappeared as the cells enter into the $G_{1}$ phase. Immunocytochemical analysis revealed that HsMCAK protein localized to centrosome and nucleus at the interphase, whereas it appeared to localize to the spindle pole, centromere of the condensed mitotic DNA, spindle fiber, or midbody, depending on the specific stage of the M phase. These results demonstrate that a rat polyclonal antibody raised against recombinant HsMCAK expressed in E. coli specifically detects human MCAK, and indicate that the electrophoretic mobility shift from $p81^{MCAK}\;to\;p84^{MCAK}$, which may be associated with its differential intracellular localization during the cell cycle, fluctuates with a maximum level of the shift at the $G_{2}-M$ phase.

Immunocytochemical Localization of Metallothionein in Gastric Adenocarcinoma (위암 조직내 Metallothionein의 면역 세포화학적 연구)

  • Yang, Seung-Ha;Shin, Kil-Sang;Kim, Wan-Jong
    • Applied Microscopy
    • /
    • v.32 no.4
    • /
    • pp.411-419
    • /
    • 2002
  • Metallothionein (MT) is a family of ubiquitous, low molecular weight ($6,000{\sim}7,000D$), cysteine-rich ($30{\sim}35%$) inducible protein with a high affinity to metal ions and has no aromatic amino acids and histidine. Some of the known functions of MT include detoxification of heavy metals and alkylating agents and neutralization of free radicals. Also, this protein has been reported to involve in tumor pathophysiology and therapy resistance. MT expression may affect a number of cellular processes including gene expression, apoptosis, proliferation and differentiation. Many reports on the physiological and biochemical properties of MT have been published, but ultrastructural reports on the localization of MT in human gastric cancer tissues are extremely rare. The present study was undertaken to examine the ultrastructural features and the localization of MT within the gastric adenocarcinoma. Ultrastructures of gastric cancer cells were characterized by the high nuclear cytoplasmic ratio, the interdigitation between cells, the irregular nucleus containing much heterochromatin and the wide distribution of free ribosomes in the cytoplasm. Immunohistochemical reaction for MT was prominent in the gastric adenocarcinoma. And the immunogold labellings were more prominent within the nucleus than the cytoplasm. Particularly, immunogold particles were numerously seen at nulcleolus or nucleolar associated heterochromatin. These results suggest that MT expression by gastric cancer cells is associated with cell proliferative activity and is possibly synthesized in the cytoplasm, and then the protein is transported into the nucleus to participate in any transcriptional steps.

Production of Retinol-binding Protein by Caprine Conceptus during the Time Period of Maternal Recognition of Pregnancy

  • Liu, K.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.7
    • /
    • pp.962-967
    • /
    • 2003
  • The purpose of the study were to characterize the proteins secreted by elongating caprine conceptus, to identify a group of low molecular weight proteins as retinol-binding protein (RBP), to identify RBP cell-specific localization in conceptus tissue, and to demonstrate that the conceptuses secreted continuously RBP during the time period maternal recognition of pregnancy. Caprine conceptuses were removed from the uterus between days 16 and 22 of pregnancy, the time period maternal recognition of pregnancy. Isolated conceptuses were cultured in a modified minimum essential medium in the presence of radiolabeled amino acids. Proteins synthesized and secreted into medium were analyzed by fluorography of two-dimensional polyacrylamide gel electrophoresis and fluorography. At least five proteins showed consistently a grouping of spots with characteristic location on two-dimensional gels. A major low molecular weight protein consisted of two major isoforms (pI 5.3-6.0) of similar molecular mass (21 kDa) was identified as RBP by using antiserum against RBP. Presence of RBP in conceptus culture medium and uterine flushings between days 16 and 22 of pregnancy were determined by immunoprecipitation and Western blotting using anti-RBP serum. In immunocytochemical study, strong immunostaining for RBP was localized in trophectoderm and endoderm of conceptus. These results clearly demonstrated that the caprine conceptus was active in protein synthesis as early as day 16 of pregnancy. Secretion of RBP by caprine conceptuses (days 16-22) coincident with the rapid transformation of the conceptus from a spherical blastocyst to a filamentous structure. Production of RBP by the elongating conceptuses may be indicative of an important role for conceptus RBP in the transport, availability and metabolism of retinol during maternal recognition of pregnancy.

Ricinus communis extract inhibits the adipocyte differentiation through activating the Wnt/β-catenin signaling pathway

  • Kim, Bora;Kim, Hyun-Soo
    • Food Science and Preservation
    • /
    • v.24 no.4
    • /
    • pp.524-528
    • /
    • 2017
  • Ricinus communis, belongs to the family Euphorbiaceae, has been known as medicinal plants for treatment of inflammation, tumors, antidiabetic, hepatoprotective and laxative. Compared to many pharmacological studies, the effect of R. communis extract on regulating adipogenesis as therapeutic drug for treating obesity has not been reported. R. communis extract (RCE) was investigated to determine its effects on the adipogenesis by monitoring the status of $Wnt/{\beta}-catenin$ signaling and factors involving the differentiation of adipocytes. The differentiation of 3T3-L1 cells monitored by Oil Red O staining was inhibited in concentration dependent manner by RCE. The luciferase activity of HEK 293-TOP cells containing pTOPFlash with Tcf4 response element-luciferase gene was increased approximately 2-folds by the treatment of RCE at concentrations of $100{\mu}g/mL$ compared to the control. Activation of the $Wnt/{\beta}-catenin$ pathway by RCE was further confirmed by immunocytochemical analysis which shows an increment of nuclear localization of ${\beta}-catenin$. In addition, safety of RCE was verified through performing neural stem cell morphology assay. Among the identified flavonoids in RCE, isoquercitrin was the most abundant. Therefore, these results indicate that the adipocyte differentiation was significantly reduced by isoquercitrin in R. communis. In this study, RCE suppresses the adipogenesis of 3T3-L1 cells via the activation of $Wnt/{\beta}-catenin$ signaling.

The study on the TH(tyrosine hydroxylase) immunoreactive cells in forebrain of developing mongolian gerbil (발달중인 Mongolian gerbil의 전뇌에서 TH 면역반응세포의 분포에 관한 연구)

  • Lee, Kyoung-youl;park, Il-kwon;Kwon, Hyo-jung;Park, Mi-sun;Song, Chi-won;Kim, Moo-kang;Chang, Kyu-tae;Lee, Kang-iee;Kim, Won-sik;Park, Won-hark
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.2
    • /
    • pp.147-155
    • /
    • 2001
  • The immunocytochemical localization of tyrosine hydroxylase(TH) is examined in the developmental forebrain of mongolian gerbil in order to determine changes in the distribution and cytology of neurons. At each of the different developmental stage, including prenatal(E)14, E16, E18, E20, postnatal(P)0, P2, P4 days, mongolian gerbils were sacrificed. In E14, TH-IR cells were predominantly round or oval in shape and their processes were very short. In olfactory blub, TH-IR cells were begun to appear from E20. In the striatum, we observed only fibers of TH-IR at all ages. From E16, TH-IR perikarya and fiber were present in periventricular nucleus and paraventricular nucleus of hypothalamus. The changes from the early to the late prenatal stages of development appear to be the result of an increase in number of TH-IR perikarya and processes. These results were shown slight differences to other rodents.

  • PDF

Immunocytochemical Localization Qf raf Protein Kinase in Cerebrum of Geoclemys reevesii (Gray) (남생이(Geoclemys reevesii) 대뇌에 있어서 raf Protein Kinase의 면역세포화학적 분포)

  • 최원철;문현근
    • The Korean Journal of Zoology
    • /
    • v.33 no.2
    • /
    • pp.141-151
    • /
    • 1990
  • Raf protein kinases and protein kinase C belong to serine/threonine-specific proteins in the cytoplasin, and are similar to each other in functional structure and the aspect of the distribution of celI. The distribution of raf protein kinase in the cerebrum of Geoclemys reevesfi as studied by using the antibodies against a-raf and c-raf protein kinase which induce the expression of raf fainily oncogenes. In general, raf protein kinases were distributed in such restricted regions as the general pallium, hippocampal formation, pdmordiuin hippocampi,nucleus of lateral olfactory tract, basal amygdaloid nucleus, and bed of stria terminalis. Immunological labeling of c-raf protein kinase was more widespread than that of a-raf. However, the intensity of the labeling of c-raf was lower than that of a-raf. The spherical cells of basal amygdaloid nucleus is a ring-like form, because only the cytoplasm was imunolabeled. Especially, c-raf protein kinase occurred in the cells which contained protein kinase C abundandy such as pyramidal cells and Purkinje cells. This suggests that a- and e-raf protein kinases may synegistically induce carclnoma with myc gene which is activated by protein kinase C.

  • PDF

Immunocytochemical Localization of Melanopsin-immunoreactive Neurons in the Mouse Visual Cortex (생쥐 시각피질에서 melanopsin을 가지는 신경세포의 면역조직화학적 위치)

  • Lee, Won-Sig;Noh, Eun-Jong;Seo, Yoon-Dam;Jeong, Se-Jin;Lee, Eun-Shil;Jeon, Chang-Jin
    • Journal of Life Science
    • /
    • v.23 no.6
    • /
    • pp.804-811
    • /
    • 2013
  • Melanopsin is an opsin-like photopigment found in the small proportion of photosensitive ganglion cells of the retina. It is involved in the regulation of the synchronization of the circadian cycle as well as in the control of pupillary light reflex. The purpose of the present study is to investigate whether melanopsin is also expressed in the other areas of the central visual system outside the retina. We have studied the distribution and morphology of neurons containing melanopsin in the mouse visual cortex with antibody immunocytochemistry. Melanopsin immunoreactivity was mostly present in neuronal soma, but not in nuclei. We found that melanopsin was present in a large subset of neurons within the adult mouse visual cortex with the highest density in layer II/III. In layer I of the visual cortex, melanopsin-immunoreactive (IR) neurons were rarely encountered. In the mouse visual cortex, the majority of the melanopsin-IR neurons consisted of round/oval cells, but was varied in morphology. Vertical fusiform and pyramidal cells were also rarely labeled with the anti-melanopsin antibody. The labeled cells did not show any distinctive distributional pattern. Some melanopsin-IR neurons in mouse visual cortex co-localized with nitricoxide synthase, calbindin and parvalbumin. Our data indicate that melanopsin is located in specific neurons and surprisingly widespread in visual cortex. This finding raises the need of the functional study of melanopsin in central visual areas outside the retina.