Browse > Article
http://dx.doi.org/10.5352/JLS.2013.23.6.804

Immunocytochemical Localization of Melanopsin-immunoreactive Neurons in the Mouse Visual Cortex  

Lee, Won-Sig (Department of Biology, College of Natural Sciences, Kyungpook National University)
Noh, Eun-Jong (Department of Biology, College of Natural Sciences, Kyungpook National University)
Seo, Yoon-Dam (Department of Biology, College of Natural Sciences, Kyungpook National University)
Jeong, Se-Jin (Department of Biology, College of Natural Sciences, Kyungpook National University)
Lee, Eun-Shil (Department of Biology, College of Natural Sciences, Kyungpook National University)
Jeon, Chang-Jin (Department of Biology, College of Natural Sciences, Kyungpook National University)
Publication Information
Journal of Life Science / v.23, no.6, 2013 , pp. 804-811 More about this Journal
Abstract
Melanopsin is an opsin-like photopigment found in the small proportion of photosensitive ganglion cells of the retina. It is involved in the regulation of the synchronization of the circadian cycle as well as in the control of pupillary light reflex. The purpose of the present study is to investigate whether melanopsin is also expressed in the other areas of the central visual system outside the retina. We have studied the distribution and morphology of neurons containing melanopsin in the mouse visual cortex with antibody immunocytochemistry. Melanopsin immunoreactivity was mostly present in neuronal soma, but not in nuclei. We found that melanopsin was present in a large subset of neurons within the adult mouse visual cortex with the highest density in layer II/III. In layer I of the visual cortex, melanopsin-immunoreactive (IR) neurons were rarely encountered. In the mouse visual cortex, the majority of the melanopsin-IR neurons consisted of round/oval cells, but was varied in morphology. Vertical fusiform and pyramidal cells were also rarely labeled with the anti-melanopsin antibody. The labeled cells did not show any distinctive distributional pattern. Some melanopsin-IR neurons in mouse visual cortex co-localized with nitricoxide synthase, calbindin and parvalbumin. Our data indicate that melanopsin is located in specific neurons and surprisingly widespread in visual cortex. This finding raises the need of the functional study of melanopsin in central visual areas outside the retina.
Keywords
Immunocytochemistry; localization; melanopsin; visual cortex;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Berson, D. M., Dunn, F. A. and Takao, M. 2002. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070-1073.   DOI   ScienceOn
2 Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. and Deisseroth, K. 2005. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8, 1263-1268.   DOI   ScienceOn
3 Cassone, M. C., Lombard, A., Rossetti, V., Urciuoli, R. and Rolfo, P. M. 1993. Effect of in vivo He–Ne laser irradiation on biogenic amine levels in rat brain. J Photochem Photobiol B 18, 291-294.   DOI   ScienceOn
4 Cellerino, A., Siciliano, R., Domenici, L. and Mafferi, L. 1992. Parvalbumin immunoreactivity: a reliable marker for the effects of monocular deprivation in the rat visual cortex. Neuroscience 51, 749-753.   DOI   ScienceOn
5 Gonchar, Y. and Burkhalter, A. 1997. Three distinct families of GABAergic neurons in rat visual cortex. Cereb Cortex 7, 347-358.   DOI   ScienceOn
6 Gonchar, Y. and Burkhalter, A. 1999. Differential subcellualr localization of forward and feedback interareal inputs to parvalbumin expressing GABAergic neurons in rat visual cortex. J Comp Neurol 406, 346-360.   DOI   ScienceOn
7 Hannibal, J., Hindersson, P., Nevo, E. and Fahrenkrug, J. 2002. The circadian photopigment melanopsin is expressed in the blind subterranean mole rat, Spalax. Neuroreport 13, 1411-1414.   DOI   ScienceOn
8 Hannibal, J., Hindersson, P., Knudsen, S. M., Georg, B. and Fahrenkrug, J. 2002. The photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptide-contaning retinal ganglion cells of the retinohypothalamic tract. J Neurosci 22, RC191.
9 Hartwick, A. T., Bramley, J. R., Yu, J., Stevens, K. T., Allen, C. N., Baldridge, W. H., Sollars, P. J. and Pickard, G. E. 2007. Light-evoked calcium responses of isolated melanopsin-expressing retinal ganglion cells. J Neurosci 27, 13468-13480.   DOI   ScienceOn
10 Hatori, M. and Panda, S. 2010. The emerging roles of melanopsin in behabioral adaptation to light. Trends Mol Med 16, 435-446.   DOI   ScienceOn
11 Hattar, S., Liao, H.-W., Takao, M., Berson, D. M. and Yau, K.-W. 2002. Melanopsin-contaning retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science 295, 1065-1070.   DOI   ScienceOn
12 Hattar, S., Kumar, M., Park, A., Tong, P., Tung, J., Yau, K. W. and Berson, D. M. 2006. Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497, 326-349.   DOI   ScienceOn
13 Jeon, M. H., Jeon, C. J. and Yang, H. W. 1998. Calretinin and calbindin D28K immunoreactivity in the superficial layers of the rabbit superior colliculus. Neuroreport 9, 3847-3852.   DOI   ScienceOn
14 Leszkiewicz, D. and Aizenman, E. 2003. Reversible modulation of GABA(A) receptor-mediated currents by light is dependent on theredox state of the receptor. Eur J Neurosci 17, 2077-2083.   DOI   ScienceOn
15 Lee, J. E., Ahn, C. H., Lee, J. Y., Chung, E. S. and Jeon, C. J. 2004. Nitric oxide synthase and calcium-binding protein-containing neurons in the hamster visual cortex. Mol Cells 18, 30-39.   과학기술학회마을
16 Lee, J. E. and Jeon, C. J. 2005. Immunocytochemical localization of nitric oxide synthase-containing neurons in mouse and rabbit visual cortex and co-localization with calcium- binding proteins. Mol Cells 19, 408-417.   과학기술학회마을
17 Leszkiewicz, D. N., Kandler, K. and Aizenman, E. 2000. Enhancement of NMDA receptor-mediated currents by light in rat neurones invitro. J Physiol 524, 365-374.   DOI   ScienceOn
18 Letinic, K. and Kostovic, I. 1998. Postnatal development of calcium-binding proteins calbindin and parvalbumin in human visual cortex. Cereb Cortex 8, 660-669.   DOI
19 Leuba, G. and Saini, K. 1996. Calcium-binding proteins immunoreactivity in the human subcortical and cortical visual structures. Vis Neurosci 13, 997-1009.   DOI   ScienceOn
20 Leuba, G. and Saini, K. 1997. Colocalization of parvalbumin, calretinin, and calbindin D-28k in the human cortical and subcortical visual structures. J Chem Neuroanat 13, 41-52.   DOI   ScienceOn
21 Lucas, R., Hattar, S., Takao, M., Berson, D. M., Foster, R. G. and Yau, K. -W. 2003. Diminished papillary light reflex at high irradiances in melanopsin-knockout mice. Science 299, 245-247.   DOI   ScienceOn
22 Nissila, J., Manttari, S., Tuominen, H., Takala, T., Saarela, S. and Timonen, M. 2012. The abundance and distribution of melanopsin (OPN4) protein in human brain. 20th European Congress of Psychiatry. March 3-6. Prague, Czech Republic.
23 Park, H. J., Kong, J. H., Kang, Y. S., Park, W. M., Jeong, S. A., Park, S. M., Lim, J. K. and Jeon, C. J. 2002. The distribution and morphology of calbindin D-28K- and calretinin- immunoreactive neurons in the visual cortex of mouse. Mol Cells 14, 143-149.   과학기술학회마을
24 Panda, S., Sato, T. K., Castrucci, A. M., Rollag, M. D., DeGrip, W. J., Hogenesch, J. B., Provencio, I. and Kay, S. A. 2002. Melanopsin(Opn4) requirement for normal light-induced circadian phase shifting. Science 298, 2213-2216.   DOI   ScienceOn
25 Park, H. J., Hong, S. K., Kong, J. H. and Jeon, C. J. 1999. Localization of calcium-binding protein parvalbumin immunoreactive neurons in mouse and hamster visual cortex. Mol Cells 9, 542-547.   과학기술학회마을
26 Park, H. J., Lee, S. N., Lim, H. R., Kong, J. H. and Jeon, C. J. 2000. Calcium-binding protein calbindin D28K, calretinin, and parvalbumin immunoreactivity in the rabbit visual cortex. Mol Cells 10, 206-212.   과학기술학회마을   DOI   ScienceOn
27 Peirson, S. N., Halford, S. and Foster, R. G. 2009. The evolution of irradiance detection: melanopsin and the non-visual opsins. Philos Trans Rsoc Lond B Biol Sci 364, 2849-2865.   DOI   ScienceOn
28 Provencio, I., Jiang, G., De Grip, W. J., Hayes, W. P. and Rollag, M. D. 1998. Melanopsin: an opsin in melanophores, brain, and eye. Proc Natl Acad Sci USA 95, 340-345.   DOI
29 Provencio, I., Rodriquez, I. R., Jiang, G., Hayes, W. P., Moreira, E. F. and Rollag, M. D. 2000. A novel human opsin in the inner retina. J Neurosci 20, 600-605.
30 Provencio, I., Rollag, M. D. and Castrucci, A. M. 2002. Photoreceptive net in the mammalian retina. Nature 415, 493.
31 Rahman, S. A., Marcu, S., Shapiro, C. M., Brown, T. J. and Casper, R. F. 2011. Spectral modulation attenuates molecular, endocrine, and neu-robehavioral disruption induced by nocturnal light exposure. Am J Physiol 300, E518-E527.
32 Sandbakken, M., Ebbesson, L., Stefansson, S. and Helvik, J. V. 2012. Isolation and characterization of melanopsin photoreceptors of Atlantic salmon (Salmo salar). J Comp Neurol 520, 3732-3736.
33 Rollag, M. D., Berson, D. M. and Provencio, I. 2003. Melanopsin, ganglion-cell photoreceptors, and mammalian photoentrainment. J Biol Rhythms 18, 227-234.   DOI
34 Ruby, N. F., Brennan, T. J., Xie, X., Cao, V., Franken, P., Heller, H. C. and O’Hara, B. F. 2002. Role of melanopsin in circadian responses to light. Science 298, 2211-2213.   DOI   ScienceOn
35 Rusak, B., Meijer, J. H. and Harrington, M. E. 1989. Hamster circadian rhythms are phase-shifted by electrical stimulation of the geniculo-hypothalamic tract. Brain Res 493, 283-291.   DOI   ScienceOn
36 Schwaller, B. 2007. Emerging functions of the "$Ca^{2+}$ buffers" parvalbumin, calbindin D-28k and calretinin in the brain, pp. 198-221. In: Lajtha, A. and Banik, N. (eds.), Handbook of Neurochemistry and Molecular Neurobiology. Springer Science+Business Media: Berlin Heidelberg, German.
37 Sexton, T., Buhr, E. and Van Gelder, R. N. 2012. Melanopsin and mechanisms of non-visual ocular photoreception. J Biol Chem 287, 1649-1656.   DOI
38 Shichida, Y. and Matsuyama, T. 2009. Evolution of opsins and phototrans-duction. Philos Trans R Soc Lond B Biol Sci 364, 2881-2895.   DOI   ScienceOn
39 Shen-Zeng, Xiao-Jian., Lin, S. Z. and Wang, L. H. 1982. Effects of a lowpower laser beam guided by optic fiber on rat brain striatal monoamines and amino acids. Neurosci Lett 32, 203-208.   DOI   ScienceOn
40 Tsunematsu, T., Tanaka, K. F., Yamanaka, A. and Koizumi, A. 2012. Ectopic expression of melanopsin in orexin/hypocretin neurons enables control of wakefulness of mice in vivo by blue light. Neurosci Res 75, 23-28.
41 Yamashita, T., Terakita, A., Kai, T. and Shichida, Y. 2008. Conformational change of the transmembrane helices II and IV of metabotropic glutamate receptor involved in G protein activation. J Neurochem 106, 850-859.   DOI   ScienceOn
42 Van Brundt, E. E., Shepherd, M. D., Wale, J. R, Ganong, W. F. and Clegg, M.-T. 1964. Penetration of light into the brain of mammals. Ann NY Acad Sci 117, 217-224.
43 Wade, P. D., Taylor, J. and Siekevitz, P. 1988. Mammalian cerebral corticaltissue responds to low-intensity visible light. Proc Natl Acad Sci USA 85, 9322-9326.   DOI   ScienceOn
44 Warren, E. J., Allen, C. N., Brown, R. L. and Robinson, D. W. 2006. The light-activated signaling pathway in SCN-projecting rat retinalganglion cells. Eur J Neurosci 23, 2477-2487.   DOI   ScienceOn
45 Zhang, D. Q., Wong, K. Y., Sollars, P. J., Berson, D. M., Pickard, G. E. and McMahon, D. G. 2008. Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons. Proc Natl Acad Sci USA 105, 14181-14186.   DOI   ScienceOn