• Title/Summary/Keyword: Immune balance

Search Result 102, Processing Time 0.042 seconds

Identification and validation of putative biomarkers by in silico analysis, mRNA expression and oxidative stress indicators for negative energy balance in buffaloes during transition period

  • Savleen Kour;Neelesh Sharma;Praveen Kumar Guttula;Mukesh Kumar Gupta;Marcos Veiga dos Santos;Goran Bacic;Nino Macesic;Anand Kumar Pathak;Young-Ok Son
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.522-535
    • /
    • 2024
  • Objective: Transition period is considered from 3 weeks prepartum to 3 weeks postpartum, characterized with dramatic events (endocrine, metabolic, and physiological) leading to occurrence of production diseases (negative energy balance/ketosis, milk fever etc). The objectives of our study were to analyze the periodic concentration of serum beta-hydroxy butyric acid (BHBA), glucose and oxidative markers along with identification, and validation of the putative markers of negative energy balance in buffaloes using in-silico and quantitative real time-polymerase chain reaction (qRT-PCR) assay. Methods: Out of 20 potential markers of ketosis identified by in-silico analysis, two were selected and analyzed by qRT-PCR technique (upregulated; acetyl serotonin o-methyl transferase like and down regulated; guanylate cyclase activator 1B). Additional two sets of genes (carnitine palmotyl transferase A; upregulated and Insulin growth factor; downregulated) that have a role of hepatic fatty acid oxidation to maintain energy demands via gluconeogenesis were also validated. Extracted cDNA (complementary deoxyribonucleic acid) from the blood of the buffaloes were used for validation of selected genes via qRTPCR. Concentrations of BHBA, glucose and oxidative stress markers were identified with their respective optimized protocols. Results: The analysis of qRT-PCR gave similar trends as shown by in-silico analysis throughout the transition period. Significant changes (p<0.05) in the levels of BHBA, glucose and oxidative stress markers throughout this period were observed. This study provides validation from in-silico and qRT-PCR assays for potential markers to be used for earliest diagnosis of negative energy balance in buffaloes. Conclusion: Apart from conventional diagnostic methods, this study improves the understanding of putative biomarkers at the molecular level which helps to unfold their role in normal immune function, fat synthesis/metabolism and oxidative stress pathways. Therefore, provides an opportunity to discover more accurate and sensitive diagnostic aids.

Immunomodulatory Effect of a New Herbal Preparation (HemoHIM) in Cyclophosphamide-treated Mice

  • Park, Hae-Ran;Jo, Sung-Kee;Jung, U-Hee;Kim, Sung-Ho;Yee, Sung-Tae
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.1
    • /
    • pp.54-60
    • /
    • 2006
  • The immunomodulatory effect of a new herbal preparation, HemoHIM, on the recovery from leukopenia induced by cyclophosphamide treatment was investigated. The HemoHIM was made up with an addition of the ethanol-insoluble fraction to the total water extract of Angelica Radix, Cnidii Rhizoma and Paeonia Radix. Daily oral administration of 100 mg/kg BW or 500 mg/kg BW HemoHIM accelerated the recovery from cyclophosphamide-induced leukopenia. HemoHIM increased the number of leukocytes and lymphocytes in the peripheral blood when compared with the cyclophosphamide-treated control. Moreover, the suppressed natural killer (NK) cell activity and interferon $(IFN)-{\gamma}$ secretion in the cyclophosphamide-treated mice were restored by the administration of HemoHIM. HemoHIM significantly reduced the abnormally heightened ratio of interleukin $(IL)-4/IFN-{\gamma}$ and immunoglobulin (Ig)E/IgG2a in the cyclophosphamide-treated mice. These results suggest that HemoHIM accelerates the recovery from leukopenia and alleviates the imbalanced T helper (Th)l/Th2 responses in the cyclophosphamide-treated mice. Additionally, HemoHIM was found to stimulate normal splenocytes to secrete not only Thl type cytokines such as $IFN-{\gamma}$ and IL-2, but also Th2 type cytokine IL-4. In conclusion, our results show that HemoHIM certainly has an influence on the balanced recovery of immune cells and the activation of their activities in the cyclophosphamide-treated mice.

Identification of DC21 as a Novel Target Gene Counter-regulated by IL-12 and IL-4

  • Kong, Kyoung-Ah;Jang, Ji-Young;Lee, Choong-Eun
    • BMB Reports
    • /
    • v.35 no.6
    • /
    • pp.623-628
    • /
    • 2002
  • The Th1 vs. Th2 balance is critical for the maintenance of immune homeostasis. Therefore, the genes that are selectively-regulated by the Th1 and Th2 cytokines are likely to play an important role in the Th1 and Th2 immune responses. In order to search for and identify the novel target genes that are differentially regulated by the Th1/Th2 cytokines, the human PBMC mRNAs differentially expressed upon the stimulation with IL-4 or IL-12, were screened by employing the differential display-polymerase chain reaction. Among a number of clones selected, DC21 was identified as a novel target gene that is regulated by IL-4 and IL-12. The DC21 gene expression was up-regulated either by IL-4 or IL-12, yet counter-regulated by co-treatment with IL-4 and IL-12. DC21 is a dendritic cell protein with an unknown function. The sequence analysis and conserved-domain search revealed that it has two AU-rich motifs in the 3'UTR, which is a target site for the regulation of mRNA stability by cytokines, and that it belongs to the N-acetyltransferase family. The induction of DC21 by IL-12 peaked around 8-12 h, and lasted until 24 h. LY294002 and SB203580 significantly suppressed the IL-12-induced DC21 gene expression, which implies that PI3K and p38/JNK are involved in the IL-12 signal transduction pathway that leads to the DC21 expression. Furthermore, tissue blot data indicated that DC21 is highly expressed in tissues with specialized-resident macrophages, such as the lung, liver, kidney, and placenta. Together, these data suggest a possible role for DC21 in the differentiation and maturation of dendritic cells regulated by IL-4 and IL-12.

Sulforaphane inhibits the Th2 immune response in ovalbumin-induced asthma

  • Park, Jun-Ho;Kim, Jong-Won;Lee, Chang-Min;Kim, Yeong-Dae;Chung, Sung-Woon;Jung, In-Duk;Noh, Kyung-Tae;Park, Jin-Wook;Heo, Deok-Rim;Shin, Yong-Kyoo;Seo, Jong-Keun;Park, Yeong-Min
    • BMB Reports
    • /
    • v.45 no.5
    • /
    • pp.311-316
    • /
    • 2012
  • Sulforaphane (1-isothiocyanato-4-(methylsulfinyl)-butane), belonging to a family of natural compounds that are abundant in broccoli, has received significant therapeutic interest in recent years. However, the molecular basis of its effects remains to be elucidated. In this study, we attempt to determine whether sulforaphane regulates the inflammatory response in an ovalbumin (OVA)-induced murine asthma model. Mice were sensitized with OVA, treated with sulforaphane, and then challenged with OVA. Sulforaphane administration significantly alleviated the OVA-induced airway hyperresponsiveness to inhaled methacholine. Additionally, sulforaphane suppressed the increase in the levels of SOCS-3 and GATA-3 and IL-4 expression in the OVA-challenged mice. Collectively, our results demonstrate that sulforaphane regulates Th2 immune responses. This sutdy provides novel insights into the regulatory role of sulforaphane in allergen-induced Th2 inflammation and airway responses, which indicates its therapeutic potential for asthma and other allergic diseases.

Immunologic Aspects at the Feto-Maternal Interface (태아모체간 계면에서의 면역학적 측면)

  • 정인배
    • Development and Reproduction
    • /
    • v.5 no.2
    • /
    • pp.93-100
    • /
    • 2001
  • Precise mechanism by which the fetus can escape from mother's immune rejection is not well understood yet over the last 50 years. The clarification of immune mechanism at the feto-maternal interface is very important, because this can be a common pathogenesis of various pathologic conditions including spontaneous abortion, habitual abortion fetal growth restriction preeclampsia, implantation failure after assisted reproductive techniques, and fetal death. In this review, current hypothetical contents were described with the priority of importance: 1) The center of this mechanism is cross-talk between the expression of HLA-C, E, G on the extravillous cytotrophoblasts and their receptors on decidual NK cell, 2) immunomodulation, 3) innate immunity is the main immunologic mechanism, 4) various mechanisms besides HLA system(eq. complement) may be associated. The overall balance of immunomodulation among these mechanisms should result in the outcome of each pregnancy. Further researches regarding the regulation of HLA system, roles of cytokines, complements should be followed in the future.

  • PDF

Synbiotics (mixture of probiotics and prebiotics) ameliorates DSS-induced ulcerative colitis in vivo.

  • Jeon, Yong-Deok;AYE, AYE;Song, Young-Jae;Kang, Sa-Haeng;Soh, Ju-Ryun;Kim, Dae-Ki;Myung, Hyun;Jin, Jong-Sik
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.107-107
    • /
    • 2019
  • Ulcerative colitis (UC) is one of inflammatory bowel disease (IBD), characterized by chronic inflammatory response and dysregulation of immune function. The severity of US has been influenced by environmental factors and food habit. The immune modulatory, anti-inflammatory and steroidal medicine have been used for the treatment of UC. However, long-term administration of those medicine is accompanied with side-effect. So, it is necessary to develop the non side-effect medicine using natural product. Prebiotics influences intestinal condition and food consumption. The heredity, immunity and environmental condition are related with occurrence of UC. In recent study, UC patients had lower level of prebiotics such as Lactobacillus and Bifidobacterium compared with healthy people. Also, previous study announced that imbalance of enteric flora aggravates the severity of UC. The effectiveness of probiotics might affect colon ability and viable bacteria also could promote the proliferation of beneficial intestinal bacteria. Prebiotics, such as herbal medicine, could lead to balance of intestinal bacteria or increase beneficial bacteria. So, proper choice of herbal medicine could control the intestinal condition. This study aimed to investigate the effect of mixture of probiotics and prebiotics (synbiotics) on dextran sulfate sodium (DSS)-induced UC in vivo. The synbiotics consist of Lactobacillus buchneri, Polymnia sonchifolia and Glycine max Merr. in this study. To evaluate the effect of synbiotics, 3% DSS was administered in BALB/c mice and synbiotics was daily administered for experimental days. The administration of synbiotics regulated colon length shortening, body weight change and disease activity index effectively. Also, extract of synbiotics upregulated survival ability of Lactobacillus buchneri in gut condition. These results suggest that mixture of probiotics and prebiotics, called as synbiotics, could influence intestinal condition also regulate the colon disease. Synbiotics might be a therapeutic agent for treatment of UC.

  • PDF

Heat stress on microbiota composition, barrier integrity, and nutrient transport in gut, production performance, and its amelioration in farm animals

  • Patra, Amlan Kumar;Kar, Indrajit
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.211-247
    • /
    • 2021
  • Livestock species experience several stresses, particularly weaning, transportation, overproduction, crowding, temperature, and diseases in their life. Heat stress (HS) is one of the most stressors, which is encountered in livestock production systems throughout the world, especially in the tropical regions and is likely to be intensified due to global rise in environmental temperature. The gut has emerged as one of the major target organs affected by HS. The alpha- and beta-diversity of gut microbiota composition are altered due to heat exposure to animals with greater colonization of pathogenic microbiota groups. HS also induces several changes in the gut including damages of microstructures of the mucosal epithelia, increased oxidative insults, reduced immunity, and increased permeability of the gut to toxins and pathogens. Vulnerability of the intestinal barrier integrity leads to invasion of pathogenic microbes and translocation of antigens to the blood circulations, which ultimately may cause systematic inflammations and immune responses. Moreover, digestion of nutrients in the guts may be impaired due to reduced enzymatic activity in the digesta, reduced surface areas for absorption and injury to the mucosal structure and altered expressions of the nutrient transport proteins and genes. The systematic hormonal changes due to HS along with alterations in immune and inflammatory responses often cause reduced feed intake and production performance in livestock and poultry. The altered microbiome likely orchestrates to the hosts for various relevant biological phenomena occurring in the body, but the exact mechanisms how functional communications occur between the microbiota and HS responses are yet to be elucidated. This review aims to discuss the effects of HS on microbiota composition, mucosal structure, oxidant-antioxidant balance mechanism, immunity, and barrier integrity in the gut, and production performance of farm animals along with the dietary ameliorations of HS. Also, this review attempts to explain the mechanisms how these biological responses are affected by HS.

Recent Trends of Immunologic Studies of Herbal Medicine on Rheumatoid Arthritis (류마티스 관절염에 대한 한약의 면역학적 연구동향)

  • Choi, Do-young;Lee, Jae-dong;Back, Yong-hyeon;Lee, Song-shil;Yoo, Myung-chul;Han, Chung-soo;Yang, Hyung-in;Park, Sang-do;Ryu, Mi-hyun;Park, Eun-kyung;Park, Dong-seok
    • Journal of Acupuncture Research
    • /
    • v.21 no.4
    • /
    • pp.177-196
    • /
    • 2004
  • Objective : Rheumatoid arthritis is an autoimmune disease that pathogenesis is not fully understood and one of the most intractable musculoskeletal diseases. The concern in the immunopathogenesis of rheumatoid arthritis has been increased since 1980's and many immunotherapeutic agents including disease-modifying antirheumatic drugs (DMARDs) were developed and became the mainstay of treatment of rheumatoid arthritis. However, the cure of the disease has hardly been achieved. In oriental medicine, rheumatoid arthritis is related to Bi-Zheng(痺證), that presents pain, swelling, andlor loss of joint function as major clinical manifestations, and also known to be deeply involved in suppression of immune function related to weakness of Jung-Ki(正氣). The herbal medicine, empirically used, could be a potential resource of development of new immunotherapeutic agents for rheumatoid arthritis. Methods : We developed a search strategy using terms to include "rheumatoid arthritis and herbal medicine" combined with "Chinese medicine" and/or "Oriental medicine". The search was focused on experimental studies of herbal medicine (January 1999 to May 2004), which is known to have effects on immune function of patients with rheumatoid arthritis. Computerized search used Internet databases including KISS and RISS4U (Korea), CNKI (China), MOMJ (Main Oriental Medicine Journal, Japan), and PubMed. The articles were selected from journals of universities or major research institutes. Results : The literature search for experimental studies on effects of herbal medicine on immunity of rheumatoid arthritis retrieved a total of 21 articles (Korea; 8, China ; 12, Japan ; 1). Of 21 articles, 10 were related to single-drug formula, 2 to drug interaction, and 9 to multi-drug formula. Single-drug formula was mainly used for aqua-acupuncture and researches on active components. Studies of drug interaction emphasized harmony of Ki-Hyul(氣血) and balance of Han-Yeul(寒熱). Multi-drug regimen was mainly found among formulas for Bo-Ki-Hyul(補氣血) and Bo-Sin(補腎). Conclusion : Studies on rheumatoid arthritis were performed both in vitro and in vivo in vitro study, LPS-stimulated splenocytes and synoviocytes were treated with herbal medicine, resulting in proliferation and activation of immune cells and suppression of cytokine activities in vivo study CIA animal model demonstrated that herbal medicine decreased antibody production and improved function of immune cells. In cellular and molecular study herbal medicine showed profound effects on the level of mRNA expression of certain cytokines related to immune function. This study revealed that herbal medicine has significant immune modulatory action and could be used for recovery of immune dysfunction of rheumatoid arthritis patients.

  • PDF

Role of Tumor-associated Macrophage in Tumor Microenvironment (암미세환경에서 종양관련대식세포의 역할)

  • Min, Do Sik
    • Journal of Life Science
    • /
    • v.28 no.8
    • /
    • pp.992-998
    • /
    • 2018
  • Cancer cells grow in an environment composed of various components that supports tumor growth. Major cell types in the tumor microenvironment are fibroblast, endothelial cells and immune cells. All of these cells communicate with cancer cells. Among infiltrating immune cells as an abundant component of solid tumors, macrophages are a major component of the tumor microenvironment and orchestrates various aspects of immunity. The complex balance between pro-tumoral and anti-tumoral effects of immune cell infiltration can create a chronic inflammatory microenvironment essential for tumor growth and progression. Macrophages express different functional programs in response to microenvironmental signals, defined as M1 and M2 polarization. Tumor-associated macrophages (TAM) secret many cytokines, chemokines and proteases, which also promote tumor angiogenesis, growth, metastasis and immunosuppression. TAM have multifaceted roles in the development of many tumor types. TAM also interact with cancer stem cells. This interaction leads to tumorigenesis, metastasis, and drug resistance. TAM obtain various immunosuppressive functions to maintain the tumor microenvironment. TAM are characterized by their heterogeneity and plasticity, as they can be functionally reprogrammed to polarized phenotypes by exposure to cancer-related factors, stromal factors, infections, or even drug interventions. Because TAMs produce tumor-specific chemokines by the stimulation of stromal factors, chemokines might serve as biomarkers that reflect disease activity. The evidence has shown that cancer tissues with high infiltration of TAM are associated with poor patient prognosis and resistance to therapies. Targeting of TAM in tumors is considered a promising therapeutic strategy for anti-cancer treatment.

IL-12 and TNF-α productions from human peripheral blood mononuclear cells in untreated patients with active pulmonary tuberculosis stimulated with 30-kDa or TSP antigen of Mycobacterium tuberculosis H37Rv (결핵균 PPD, 30-kDa 및 TSP 항원에 의한 치료전 폐결핵환자 말초혈액 단핵구의 IL-12 및 TNF-α 생성능)

  • Song, Chang-Hwa;Jo, Eun-Kyeong;Lee, Ji-Suk;Kim, Dae-Su;Lim, Jae-Hyun;Kim, Un-Ok;Nam, Hyeon-Hui;Kim, Hwa-Jung;Paik, Tae-Hyun;Park, Jeong-Kyu
    • IMMUNE NETWORK
    • /
    • v.1 no.3
    • /
    • pp.250-259
    • /
    • 2001
  • To determine if initial infection with Mycobacterium tuberculosis changes the balance of cytokines between T cells and macrophages, we evaluated interferon (IFN)-${\gamma}$), interleukin-12 (IL)-12, and tumor necrosis factor (TNF)-${\alpha}$ productions by peripheral blood mononuclear cells (PBMC) from 15 untreated active pulmonary tuberculosis (TB) patients and 12 healthy tuberculin reactors (HTR). Freshly isolated PBMC were stimulated with Triton X-100 solubilized protein (TSP), 30-kDa or purified protein derivatives (PPD) antigen for 6, 18 and 96 hours. IL-12 p40 production by antigen-stimulated PBMC from TB patients was significantly decreased compared with that in HTR. In addition, IFN-${\gamma}$ production was significantly depressed in TB patients than that in HTR at a 96-hr stimulation. However, TNF-${\alpha}$ production was significantly higher in antigen-stimulated PBMC from TB than that of HTR. A pronounced increase in IFN-${\gamma}$ protein followed neutralization of IL-10 in early TB patients. However, neutralization of TNF-${\alpha}$ did not significantly alter IFN-${\gamma}$ induction in PBMC from TB patients. There were no significantly differences in the cytokine productions among three proteins, TSP, 30-kDa or PPD antigen. These results indicate that development of TB may be strongly associated with dysregulated productions of IL-12, IFN-${\gamma}$ and TNF-${\alpha}$, during the initial immune responses to M. tuberculosis. Further understanding of operative cytokine networks during human immune cell responses to protein antigens of M. tuberculosis may improve strategies for vaccine development.

  • PDF