• Title/Summary/Keyword: Immune Tissues

Search Result 414, Processing Time 0.022 seconds

Context-Dependent Regulation of Type17 Immunity by Microbiota at the Intestinal Barrier

  • Begum Akuzum;June-Yong Lee
    • IMMUNE NETWORK
    • /
    • v.22 no.6
    • /
    • pp.46.1-46.25
    • /
    • 2022
  • T-helper-17 (Th17) cells and related IL-17-producing (type17) lymphocytes are abundant at the epithelial barrier. In response to bacterial and fungal infection, the signature cytokines IL-17A/F and IL-22 mediate the antimicrobial immune response and contribute to wound healing of injured tissues. Despite their protective function, type17 lymphocytes are also responsible for various chronic inflammatory disorders, including inflammatory bowel disease (IBD) and colitis associated cancer (CAC). A deeper understanding of type17 regulatory mechanisms could ultimately lead to the discovery of therapeutic strategies for the treatment of chronic inflammatory disorders and the prevention of cancer. In this review, we discuss the current understanding of the development and function of type17 immune cells at the intestinal barrier, focusing on the impact of microbiota-immune interactions on intestinal barrier homeostasis and disease etiology.

Prophylactic and Therapeutic Modulation of Innate and Adaptive Immunity Against Mucosal Infection of Herpes Simplex Virus

  • Uyangaa, Erdenebileg;Patil, Ajit Mahadev;Eo, Seong Kug
    • IMMUNE NETWORK
    • /
    • v.14 no.4
    • /
    • pp.187-200
    • /
    • 2014
  • Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) are the most common cause of genital ulceration in humans worldwide. Typically, HSV-1 and 2 infections via mucosal route result in a lifelong latent infection after peripheral replication in mucosal tissues, thereby providing potential transmission to neighbor hosts in response to reactivation. To break the transmission cycle, immunoprophylactics and therapeutic strategies must be focused on prevention of infection or reduction of infectivity at mucosal sites. Currently, our understanding of the immune responses against mucosal infection of HSV remains intricate and involves a balance between innate signaling pathways and the adaptive immune responses. Numerous studies have demonstrated that HSV mucosal infection induces type I interferons (IFN) via recognition of Toll-like receptors (TLRs) and activates multiple immune cell populations, including NK cells, conventional dendritic cells (DCs), and plasmacytoid DCs. This innate immune response is required not only for the early control of viral replication at mucosal sites, but also for establishing adaptive immune responses against HSV antigens. Although the contribution of humoral immune response is controversial, $CD4^+$ Th1 T cells producing IFN-${\gamma}$ are believed to play an important role in eradicating virus from the hosts. In addition, the recent experimental successes of immunoprophylactic and therapeutic compounds that enhance resistance and/or reduce viral burden at mucosal sites have accumulated. This review focuses on attempts to modulate innate and adaptive immunity against HSV mucosal infection for the development of prophylactic and therapeutic strategies. Notably, cells involved in innate immune regulations appear to shape adaptive immune responses. Thus, we summarized the current evidence of various immune mediators in response to mucosal HSV infection, focusing on the importance of innate immune responses.

Dec2 inhibits macrophage pyroptosis to promote periodontal homeostasis

  • He, Dawei;Li, Xiaoyan;Zhang, Fengzhu;Wang, Chen;Liu, Yi;Bhawal, Ujjal K.;Sun, Jiang
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.1
    • /
    • pp.28-38
    • /
    • 2022
  • Purpose: Macrophages play crucial roles as early responders to bacterial pathogens and promote/ or impede chronic inflammation in various tissues. Periodontal macrophage-induced pyroptosis results in physiological and pathological inflammatory responses. The transcription factor Dec2 is involved in regulating immune function and inflammatory processes. To characterize the potential unknown role of Dec2 in the innate immune system, we sought to elucidate the mechanism that may alleviate macrophage pyroptosis in periodontal inflammation. Methods: Porphyromonas gingivalis lipopolysaccharide (LPS) was used to induce pyroptosis in RAW 264.7 macrophages. Subsequently, we established an LPS-stimulated Dec2 overexpression cellular model in macrophages. Human chronic periodontitis tissues were employed to evaluate potential changes in inflammatory marker expression and pyroptosis. Finally, the effects of Dec2 deficiency on inflammation and pyroptosis were characterized in a P. gingivalis-treated experimental periodontitis Dec2-knockout mouse model. Results: Macrophages treated with LPS revealed significantly increased messenger RNA expression levels of Dec2 and interleukin (IL)-1β. Dec2 overexpression reduced IL-1β expression in macrophages treated with LPS. Overexpression of Dec2 also repressed the cleavage of gasdermin D (GSDMD), and the expression of caspase-11 was concurrently reduced in macrophages treated with LPS. Human chronic periodontitis tissues showed significantly higher gingival inflammation and pyroptosis-related protein expression than non-periodontitis tissues. In vivo, P. gingivalis-challenged mice exhibited a significant augmentation of F4/80, tumor necrosis factor-α, and IL-1β. Dec2 deficiency markedly induced GSDMD expression in the periodontal ligament of P. gingivalis-challenged mice. Conclusions: Our findings indicate that Dec2 deficiency exacerbated P. gingivalis LPS-induced periodontal inflammation and GSDMD-mediated pyroptosis. Collectively, our results present novel insights into the molecular functions of macrophage pyroptosis and document an unforeseen role of Dec2 in pyroptosis.

A Study on the Change in Inflammatory Activity of Macrophages and T Cells Using Pulsed Magnetic Field (펄스자기장(PMF)을 이용한 대식세포와 T 세포의 염증활성도 변화추이에 대한 연구)

  • Sojin Kim ;Hyunsook Lee
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.324-328
    • /
    • 2023
  • Excessive inflammation in the body causes immune cells to release cytokines that damage normal tissues and cells, leading to rheumatoid arthritis and sepsis. Pulsed magnetic field(PMF) stimulation has many applications in the treatment of neurological, muscular disorders and pain. Therefore, in this study, we aim to investigate the effect of PMF stimulation on the regulation of excessive inflammation in the overall immune system. Macrophages, a primary immune cell, and T cells, a secondary immune cell, were co-cultured in the insert wells under the same conditions, and then inflammation was artificially induced. The changes in inflammatory activity following PMF stimulation were measured by pH and IL-6 concentration. After inflammation induction, both cells became more acidic and increased IL-6 expression, but after PMF stimulation, we observed improved acidification of macrophages and T cells and decreased IL-6 expression. Our results showed that infected macrophages activated T cells and that the recovery of excessive inflammatory response regulation after PMF stimulation proceeded more rapidly in macrophages. Therefore, this study suggests that PMF has a positive anti-inflammatory effect on the overall immune system and thus has the potential to be used as a non-invasive therapy for the treatment of chronic inflammatory diseases.

Expression of Cancer-Testis Antigens in Pediatric Cancers

  • Ghafouri-Fard, Soudeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.13
    • /
    • pp.5149-5152
    • /
    • 2015
  • Cancer-testis antigens (CTAs) are a group of tumor-associated antigens with more than 140 members whose expression has been shown to be limited to gametogenic tissues and placenta among normal tissues. However, malignant tissues of different origins have shown aberrant and elevated expression of these antigens. Such a pattern of expression endows beneficial properties for use as cancer biomarkers as well as immunotherapeutic targets as a result of the immune-privileged status of the testes. CTAs have been shown to be expressed in pediatric brain tumors, different types of sarcomas, leukemias, and lymphomas as well as neuroblastomas. Although data regarding their expression pattern in childhood tumors are not as comprehensive as for adult tumors, it is supposed that CTA-based immunotherapeutic approaches can also be used for pediatric cancers. However, there are limited data about the objective clinical responses following immunotherapy in such patients. Here we try to review the available information.

Xenografting of the Human Vitrified Ovarian Tissues into the Immune Deficient Animal (사람 난소조직의 초자화 냉동보존과 면역결핍 동물에의 이식)

  • Lee, Kyung-Ah;Yoon, Se-Jin;Lee, Sook-Hyun;Shin, Chang-Sook;Choi, An-Na;Cho, Yong-Seon;Yoon, Tae-Ki;Cha, Kwang-Yul
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.27 no.2
    • /
    • pp.145-149
    • /
    • 2000
  • Objective: The present study was conducted to evaluate the viability of germ cells from the adult and fetal ovarian tissues after vitrification followed by xenografting. Method: The human adult ovarian tissues were obtained from 33 years old patient, and the fetal ovarian tissues were obtained from 22 weeks and 25 weeks in gestation. Ovarian tissues were cryopreserved by vitrification with 5.5 M ethylene glycol (EG 5.5) and 1.0 M sucrose as cryoprotectants. Adult and fetal ovarian tissues were pre-equilibrated with EG 5.5 at room temperature for 10 and 5 minutes, respectively and plunged into liquid nitrogen immediately. Frozen-thawed tissues were xenografted into NOD-SCID mice to evaluate the viability and capacity for further growth of the primordial follicles. Grafts were recovered from the recipients 4 weeks after transplantation and histological analysis was accomplished. Result and Conclusion: Grafts recovered 4 weeks after transplantation contained less number of oocytes and primordial follicles compared to that of the fresh tissues. Survived follicles were mainly primordial and intermediary with larger diameter and more granulosa cells. It is confirmed that 1) the ovarian tissues were healthy and the germ cells were survived after vitrification, and 2) the survived fetal primordial follicles after vitrification resumed the growth in the xenografts.

  • PDF

Tissues Expression, Polymorphisms of IFN Regulatory Factor 6 (IRF6) Gene and Their Associated with Immune Traits in Three Pig Populations

  • Liu, Yang;Xu, Jingeng;Fu, Weixuan;Weng, Ziqing;Niu, Xiaoyan;Liu, Jianfeng;Ding, Xiangdong;Zhang, Qin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.2
    • /
    • pp.163-169
    • /
    • 2012
  • Interferon regulatory factor 6 (IRF6) gene is a member of the IRF-family, and plays functionally diverse roles in the regulation of the immune system. In this report, the 13,720 bp porcine IRF6 genomic DNA structure was firstly identified with a putative IRF6 protein of 467 amino acids. Alignment and phylogenetic analysis of the porcine IRF6 amino acid sequences with their homologies to other species showed high identity (over 96%). Tissues expression of IRF6 mRNA was observed by RT-PCR, the results revealed IRF6 expressed widely in eight tissues. One SNP (HQ026023:1383 G>C) in exon7 and two SNPs (HQ026023:130 G>A; 232 C>T) in the 5′ promoter region of porcine IRF6 gene were demonstrated by DNA sequencing analysis. A further analysis of SNP genotypes associated with immune traits including IFN-${\gamma}$ and IL10 concentrations in serum was carried out in three pig populations including Large White, Landraces and Songliao Black pig (a Chinese indigenous breed). The results showed that the SNP (HQ026023:1383 G>C) was significantly associated with the level of IFN-${\gamma}$ (d 20) in serum (p = 0.038) and the ratio of IFN-${\gamma}$ to IL10 (d 20) in serum (p = 0.041); The other two SNPs (HQ026023:130 G>A; 232 C>T) were highly significantly associated with IL10 level in serum both at the day 20 (p = 0.005; p = 0.001) and the day 35 (p = 0.004; p = 0.006). Identification of the porcine IRF6 gene will help our further understanding of the molecular basis of the IFN regulation pathway in the porcine immune response. All these results should indicate that the IRF6 gene can be regarded as a molecular marker associated with the IL10 level in serum and used for genetic selection in the pig breeding.

Association of the Porcine Cluster of Differentiation 4 Gene with T Lymphocyte Subpopulations and Its Expression in Immune Tissues

  • Xu, Jingen;Liu, Yang;Fu, Weixuan;Wang, Jiying;Wang, Wenwen;Wang, Haifei;Liu, Jianfeng;Ding, Xiangdong;Zhang, Qin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.4
    • /
    • pp.463-469
    • /
    • 2013
  • Cluster of differentiation 4 (CD4) is mainly expressed on $CD4^+$ T cells, which plays an important role in immune response. The aim of this study was to detect the association between polymorphisms of the CD4 gene and T lymphocyte subpopulations in pigs, and to investigate the effects of genetic variation on the CD4 gene expression level in immune tissues. Five missense mutations in the CD4 gene were identified using DNA pooling sequencing assays, and two main haplotypes (CCTCC and AGCTG) in strong linkage disequilibrium (with frequencies of 50.26% and 46.34%, respectively) were detected in the population of Large White pigs. Our results indicated that the five SNPs and the two haplotypes were significantly associated with the proportions of $CD4^-CD8^-$, $CD4^+CD8^+$, $CD4^+CD8^-$, $CD4^+$ and $CD4^+/CD8^+$ in peripheral blood (p<0.05). Gene expression analysis showed the mRNA level of the CD4 gene in thymus was significantly higher than that in lymph node and spleen (p<0.05). However, no significant difference was observed between animals with CCTCC/CCTCC genotype and animals with AGCTG/AGCTG genotype in the three immune tissues (p>0.05). These results indicate that the CD4 gene may influence T lymphocyte subpopulations and can be considered as a candidate gene affecting immunity in pigs.

Transcript Profiling of Toll-Like Receptor mRNAs in Selected Tissues of Mink (Neovison vison)

  • Tong, Mingwei;Yi, Li;Cheng, Yuening;Zhang, Miao;Cao, Zhigang;Wang, Jianke;Zhao, Hang;Lin, Peng;Yang, Yong;Cheng, Shipeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2214-2223
    • /
    • 2016
  • Toll-like receptors (TLRs) can recognize conserved molecular patterns and initiate a wide range of innate and adaptive immune responses against invading infectious agents. The aim of this study was to assess the transcript profile of mink TLRs (mTLRs) in mink peripheral blood mononuclear cells (PBMCs) and a range of tissues, and to explore the potential role of mTLRs in the antiviral immune response process. The results indicated that the mTLR partial nucleotide sequences had a high degree of nucleotide identity with ferret sequences (95-98%). Phylogenetic analysis showed that mammalian TLRs grouped into five TLR families, with a closer relationship of the mTLRs with those of ferret than the other mammalian sequences. Moreover, all the mTLRs were ubiquitously expressed in lymphoid organs (spleen and lymph nodes) and PBMCs. Interestingly, the mTLR expression patterns in lung, uterus, and heart showed quite a lot of similarity. Another remarkable observation was the wide expression of mTLR1-3 mRNAs in all tissues. Among the analyzed tissues, skeletal muscle was revealed to being the lowest repertoire of mTLR expression. Additionally, mink PBMCs exposed to the canine distemper virus revealed significant upregulation of mTLR2, mTLR4, mTLR7, and mTLR8 mRNAs, indicating that mTLRs have a role in innate immunity in the mink. Collectively, our results are the first to establish the basic expression patterns of mTLRs and the relationship between mTLRs and a virus, which will contribute to better understanding of the evolution and the functions of mTLRs in the innate immune system in minks.

An EST survey of genes expressed in liver of rock bream(Oplegnathus fasciatus) with particular interests on the stress-responsive and immune-related genes

  • Park, Byul-Nim;Park, Ji-Eun;Kim, Ki-Hong;Kim, Dong-Soo;Nam, Yoon-Kwon
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.43-43
    • /
    • 2003
  • EST analysis was performed to identify stress-responsive and immune-related genes from rock bream (Oplegnathus fasciatus). cDNA libraries were constructed with liver and randomly chosen 624 clones were subjected to automated sequence analysis. Of 624 clones sequenced in total, approximately 15% of ESTs was novel sequences (no match to GenBank) or sequences with high homology to hypothetical/unknown genes. The bioinforamtic sequence analysis including functional clustering, homology grouping, contig assembly with electronic northern and organism matches were carried out. Several potential stress-responsive biomarker and/or immune-related genes were identified in all the tissues examined. It included lectins, ferritins, CP450, proteinase, proteinase inhibitors, anti-oxidant enzymes, various heat-shock proteins, warm temperature acclimation protein, complements, methyltransferase, zinc finger proteins, lysozymes, macrophage maturation associated protein, and others. This information will offer new possibilities as fundamental baseline data for understanding and addressing their molecular mechanism involved in host defense and immune systems of this species.

  • PDF