• Title/Summary/Keyword: Immune Network

Search Result 958, Processing Time 0.021 seconds

Efficient Induction of Th1-type Immune Responses to Hepatitis B Virus Antigens by DNA Prime-Adenovirus Boost

  • Lee, Chang-Geun;Yang, Se-Hwan;Park, Su-Hyung;Song, Man-Ki;Choi, So-Young;Sung, Young-Chul
    • IMMUNE NETWORK
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • Background: Chronic infection with hepatitis B virus (HBV) affects about 350 million people worldwide, which have a high risk of development of cirrhosis and hepatocellular carcinoma. Treatment of chronic HBV infection relies on IFN-${\alpha}$ or lamivudine. However, interferon-${\alpha}$ is effective in only about 30% of patients. Also, the occurrence of escape mutations limits the usage of lamivudine. Therefore, the development and evaluation of new compounds or approaches are urgent. Methods: We comparatively evaluated DNA and adenoviral vaccines expressing HBV antigens, either alone or in combined regimens, for their ability to elicit Th1-type immune responses in Balb / c mice which are believed to be suited to resolve HBV infection. The vaccines were tested with or without a genetically engineered IL-12 (mIL-12 N220L) which was shown to enhance sustained Th1-type immune responses in HCV E2 DNA vaccine. Results: Considering the Th1-type cytokine secretion and the IgG2a titers, the strongest Th1-type immune response was elicited by the DNA prime-adenovirus boost regimen in the presence of mIL-12 N220L. In addition, the codelivery of mIL-12 N220L modulated differentially the immune responses by different vaccination regimens. Conclusion: Our results suggest that the DNA prime-adenovirus boost regimen in the presence of mIL-12 N220L may be the best candidate for HBV vaccine therapy of the regimens tested in this study and will be worthwhile being evaluated in chronic HBV patients.

Human Activated Lymphocyte Treated with Anti-CD3, CD16, CD56 Monoclonal Antibody and IL-2 (Anti-CD3, CD16과 CD56 단일항체와 IL-2를 사용하여 활성화시킨 사람의 림프구)

  • Hong, Seon-Min;Lee, Dong-Wook;Kang, Jin-Gu;Kim, Han-Soo;Cho, Sung-Hoon
    • IMMUNE NETWORK
    • /
    • v.5 no.1
    • /
    • pp.11-15
    • /
    • 2005
  • Background: Throughtout the last three decades, the therapy of leukemias and lymphoma has set the stage for curative cancer therapy in systemic malignant disease. This was the result of an integrated work of basic reaserch and clinical investigators leading to more aggressive albeit tolerable protocol of chemotherapy and radiotherapy. High dose therapy marks the most elaborated strategies in this field today. However, intensification of conventional therapeutic modalities as mentioned has to be based on new approaches and the exploration of new antineoplastic mechanisms. This insight has resulted in immune therapy of cancer. Among the cells of the immune system, natural killer (NK) cells and T cells are of major interest for the development of therapeutic strategies. Methods: Cytotoxicity to target cells was measured by LDH release method, Characterization of activated lymphocyte was measured by Flow cytometry analysis. Anti-CD3, 16, 56 monoclonal antibody and IL-2 were used for the activation of NK and T cell. The analysis of effect of activated lymphocyte, in vivo, were used by Balb/c nude mouse. Results and Conclusion: Cytotoxicity to K562 cells was significantly higher in the mixture group of NK and T cells than that of a group of activating T cells. The survivors and the rate of reduction of size of tumor craft of nude mouse group treatment with activated lymphocyte was higher than that of the group without treatment with activated lymphocyte. Therefore, this results are suggested that the activated lymphocytes by anti-CD3, CD16 and CD56 can reduce the malignancy effect of lymphoma.

Application of Apoptogenic Pretreatment to Enhance Anti-tumor Immunity of Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF)-secreting CT26 Tumor Cells

  • Jun, Do-Youn;Jaffee, Elizabeth M;Kim, Young-Ho
    • IMMUNE NETWORK
    • /
    • v.5 no.2
    • /
    • pp.110-116
    • /
    • 2005
  • Background: As an attempt to develop a strategy to improve the protective immune response to GM-CSF-secreting CT26 (GM-CSF/CT26) tumor vaccine, we have investigated whether the apoptogenic treatment of GM-CSF/CT26 prior to vaccination enhances the induction of anti-tumor immune response in mouse model. Methods: A carcinogeninduced mouse colorectal tumor, CT26 was transfected with GM-CSF gene using a retroviral vector to generate GM-CSF-secreting CT26 (CT26/GM-CSF). The CT26/GM-CSF was treated with ${\gamma}$-irradiation or mitomycin C to induce apoptosis and vaccinated into BALB/c mice. After 7 days, the mice were injected with a lethal dose of challenge live CT26 cells to examine the protective effect of tumor vaccination in vivo. Results: Although both apoptotic and necrotic CT26/GM-CSF vaccines were able to enhance anti-tumor immune response, apoptotic CT26/GM-CSF induced by pretreatment with ${\gamma}$-irradiation (50,000 rads) was the most potent in generating the anti-tumor immunity, and thus 100% of mice vaccinated with the apoptotic cells remained tumor free for more than 60 days after tumor challenge. Conclusion: Apoptogenic pretreatment of GM-CSF-secreting CT26 tumor vaccine by ${\gamma}$-irradiation (50,000 rads) resulted in a significant enhancement in inducing the protective anti-tumor immunity. A rapid induction of apoptosis of CT26/GM-CSF tumor vaccine at the vaccine site might be critical for the enhancement in anti-tumor immune response to tumor vaccine.

Effect of 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol on Immune Functions in Healthy Adults in a Randomized Controlled Trial

  • Hwang, Hee-Jin;Sohn, Ki-Young;Han, Yong-Hae;Chong, Saeho;Yoon, Sun Young;Kim, Young-Jun;Jeong, Jinseoun;Kim, Sang-Hwan;Kim, Jae Wha
    • IMMUNE NETWORK
    • /
    • v.15 no.3
    • /
    • pp.150-160
    • /
    • 2015
  • We previously reported that 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) accelerates hematopoiesis and has an improving effect on animal disease models such as sepsis and asthma. The effects of PLAG supplementation on immune modulation were assessed in healthy men and women. The objective was to evaluate the effects of PLAG supplementation on immune regulatory functions such as activities of immune cells and cytokine production. A randomized double blind placebo-controlled trial was conducted. Seventy-five participants were assigned to one of two groups; all participants had an appropriate number of white blood cells on the testing day. The PLAG group (n=27) received oral PLAG supplements and the control group (n=22) received oral soybean oil supplements. IL-4 and IL-6 production by peripheral blood mononuclear cells (PBMC) were lower (p<0.001 and p<0.001, respectively) with PLAG than with soybean oil. However, the production of IL-2 and IFN-$\gamma$ by PBMC was unaltered with PLAG supplementation. The B cell proliferation decreased significantly in the PLAG group compared to the soybean oil control (p<0.05). The intake of PLAG in healthy adults for 4 weeks was deemed safe. These data suggest that PLAG has an immunomodulatory function that inhibits the excessive immune activity of immunological disorders such as atopic and autoimmune diseases. PLAG could improve the condition of these diseases safely as a health food supplement.

Alloferon Alleviates Dextran Sulfate Sodium-induced Colitis

  • Kim, Hyemin;Im, Jong Pil;Kim, Joo Sung;Kang, Jae Seung;Lee, Wang Jae
    • IMMUNE NETWORK
    • /
    • v.15 no.3
    • /
    • pp.135-141
    • /
    • 2015
  • Dysfunction of gut immune regulation is involved in mucosal damage in inflammatory bowel disease (IBD). However, there is still no efficacious immune-regulator for the treatment of IBD. Alloferon is a novel immune-modulatory peptide that was originally isolated from infected insects. It shows anti-inflammatory effects by the regulation of cytokine production by immune cells and their activities. Therefore, we investigated the effect of alloferon in a mouse model of colitis using dextran sulfate sodium (DSS). Colitis was induced by administration of DSS in drinking water for 7 consecutive days. It was confirmed by the presence of weight loss, diarrhea, hematochezia, and colon contraction. Alloferon was injected 4 days after DSS administration. We found that alloferon improved the pathogenesis of IBD based on the reduced disease activity index (DAI) and colon contraction. Edema, epithelial erosion, and immune cell infiltration were found in mice administered DSS, but the phenomena were reduced following alloferon treatment. The plasma level of IL-6, a classical pro-inflammatory cytokine in colitis, was also decreased by alloferon. Moreover, alloferon inhibited the TNF-${\alpha}$-induced degradation and phosphorylation of $I{\kappa}B$ in Colo205 colon cancer cells. Taken together, these results show that alloferon has anti-inflammatory effects and attenuates DSS-induced colitis.

As a Modulator, Multitasking Roles of SIRT1 in Respiratory Diseases

  • Yunxin Zhou;Fan Zhang;Junying Ding
    • IMMUNE NETWORK
    • /
    • v.22 no.3
    • /
    • pp.21.1-21.21
    • /
    • 2022
  • As far the current severe coronavirus disease 2019 (COVID-19), respiratory disease is still the biggest threat to human health. In addition, infectious respiratory diseases are particularly prominent. In addition to killing and clearing the infection pathogen directly, regulating the immune responses against the pathogens is also an important therapeutic modality. Sirtuins belong to NAD+-dependent class III histone deacetylases. Among 7 types of sirtuins, silent information regulator type-1 (SIRT1) played a multitasking role in modulating a wide range of physiological processes, including oxidative stress, inflammation, cell apoptosis, autophagy, antibacterial and antiviral functions. It showed a critical effect in regulating immune responses by deacetylation modification, especially through high-mobility group box 1 (HMGB1), a core molecule regulating the immune system. SIRT1 was associated with many respiratory diseases, including COVID-19 infection, bacterial pneumonia, tuberculosis, and so on. Here, we reviewed the latest research progress regarding the effects of SIRT1 on immune system in respiratory diseases. First, the structure and catalytic characteristics of SIRT1 were introduced. Next, the roles of SIRT1, and the mechanisms underlying the immune regulatory effect through HMGB1, as well as the specific activators/inhibitors of SIRT1, were elaborated. Finally, the multitasking roles of SIRT1 in several respiratory diseases were discussed separately. Taken together, this review implied that SIRT1 could serve as a promising specific therapeutic target for the treatment of respiratory diseases.

On Designing a Robot Manipulator Control System using Immunized Recurrent Neural Network (면역화된 귀환 신경망을 이용한 로보트 매니퓰레이터 제어 시스템 설계)

  • 원경재;김성현;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.263-266
    • /
    • 1997
  • In this paper we will develope the immnized recurrent neural network control system of a robot manipulator with high robustness in dynamically changing environment conditions. Immune system detects and eliminates the non-self materials called antigen such as virus, bacteria and so on which come from inside and outside of the living system, so plays an important role in maintaining its own system against dynamically changing environments. We apply this concept to a robot manipulator and evaluate the effectiveness of the above proposed system.

  • PDF

Recombinant DNA and Protein Vaccines for Foot-and-mouth Disease Induce Humoral and Cellular Immune Responses in Mice

  • Bae, Ji-Young;Moon, Sun-Hwa;Choi, Jung-Ah;Park, Jong-Sug;Hahn, Bum-Soo;Kim, Ki-Yong;Kim, Byung-Han;Song, Jae-Young;Kwon, Dae-Hyuck;Lee, Suk-Chan;Kim, Jong-Bum;Yang, Joo-Sung
    • IMMUNE NETWORK
    • /
    • v.9 no.6
    • /
    • pp.265-273
    • /
    • 2009
  • Foot-and-mouth disease virus (FMDV) is a small single-stranded RNA virus which belongs to the family Picornaviridae, genus Apthovirus. It is a principal cause of FMD which is highly contagious in livestock. In a wild type virus infection, infected animals usually elicit antibodies against structural and non-structural protein of FMDV. A structural protein, VP1, is involved in neutralization of virus particle, and has both B and T cell epitopes. A RNA-dependent RNA polymerase, 3D, is highly conserved among other serotypes and strongly immunogenic, therefore, we selected VP1 and 3D as vaccine targets. VP1 and 3D genes were codon-optimized to enhance protein expression level and cloned into mammalian expression vector. To produce recombinant protein, VP1 and 3D genes were also cloned into pET vector. The VP1 and 3D DNA or proteins were co-immunized into 5 weeks old BALB/C mice. Antigen-specific serum antibody (Ab) responses were detected by Ab ELISA. Cellular immune response against VP1 and 3D was confirmed by ELISpot assay. The results showed that all DNA- and protein-immunized groups induced cellular immune responses, suggesting that both DNA and recombinant protein vaccine administration efficiently induced Ag-specific humoral and cellular immune responses.