DOI QR코드

DOI QR Code

Alloferon Alleviates Dextran Sulfate Sodium-induced Colitis

  • Kim, Hyemin (Department of Anatomy, Seoul National University College of Medicine) ;
  • Im, Jong Pil (Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine) ;
  • Kim, Joo Sung (Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine) ;
  • Kang, Jae Seung (Department of Anatomy, Seoul National University College of Medicine) ;
  • Lee, Wang Jae (Department of Anatomy, Seoul National University College of Medicine)
  • Received : 2015.03.07
  • Accepted : 2015.05.20
  • Published : 2015.06.30

Abstract

Dysfunction of gut immune regulation is involved in mucosal damage in inflammatory bowel disease (IBD). However, there is still no efficacious immune-regulator for the treatment of IBD. Alloferon is a novel immune-modulatory peptide that was originally isolated from infected insects. It shows anti-inflammatory effects by the regulation of cytokine production by immune cells and their activities. Therefore, we investigated the effect of alloferon in a mouse model of colitis using dextran sulfate sodium (DSS). Colitis was induced by administration of DSS in drinking water for 7 consecutive days. It was confirmed by the presence of weight loss, diarrhea, hematochezia, and colon contraction. Alloferon was injected 4 days after DSS administration. We found that alloferon improved the pathogenesis of IBD based on the reduced disease activity index (DAI) and colon contraction. Edema, epithelial erosion, and immune cell infiltration were found in mice administered DSS, but the phenomena were reduced following alloferon treatment. The plasma level of IL-6, a classical pro-inflammatory cytokine in colitis, was also decreased by alloferon. Moreover, alloferon inhibited the TNF-${\alpha}$-induced degradation and phosphorylation of $I{\kappa}B$ in Colo205 colon cancer cells. Taken together, these results show that alloferon has anti-inflammatory effects and attenuates DSS-induced colitis.

Keywords

References

  1. Xavier, R. J., and D. K. Podolsky. 2007. Unravelling the pathogenesis of inflammatory bowel disease. Nature 448: 427-434. https://doi.org/10.1038/nature06005
  2. Baumgart, D. C., and W. J. Sandborn. 2007. Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 369: 1641-1657. https://doi.org/10.1016/S0140-6736(07)60751-X
  3. Thia, K. T., E. V. Loftus, Jr., W. J. Sandborn, and S. K. Yang. 2008. An update on the epidemiology of inflammatory bowel disease in Asia. Am. J .Gastroenterol. 103: 3167-3182. https://doi.org/10.1111/j.1572-0241.2008.02158.x
  4. Yang, S. K., S. Yun, J. H. Kim, J. Y. Park, H. Y. Kim, Y. H. Kim, D. K. Chang, J. S. Kim, I. S. Song, J. B. Park, E. R. Park, K. J. Kim, G. Moon, and S. H. Yang. 2008. Epidemiology of inflammatory bowel disease in the Songpa-Kangdong district, Seoul, Korea, 1986-2005: a KASID study. Inflamm. Bowel. Dis. 14: 542-549. https://doi.org/10.1002/ibd.20310
  5. Kraus, T. A., L. Toy, L. Chan, J. Childs, A. Cheifetz, and L. Mayer. 2004. Failure to induce oral tolerance in Crohn's and ulcerative colitis patients: possible genetic risk. Ann. N. Y. Acad. Sci. 1029: 225-238. https://doi.org/10.1196/annals.1309.054
  6. Chernysh, S., S. I. Kim, G. Bekker, V. A. Pleskach, N. A. Filatova, V. B. Anikin, V. G. Platonov, and P. Bulet. 2002. Antiviral and antitumor peptides from insects. Proc. Natl. Acad. Sci. U. S. A. 99: 12628-12632. https://doi.org/10.1073/pnas.192301899
  7. Chernysh, S., K. Irina, and A. Irina. 2012. Anti-tumor activity of immunomodulatory peptide alloferon-1 in mouse tumor transplantation model. Int. Immunopharmacol. 12: 312-314. https://doi.org/10.1016/j.intimp.2011.10.016
  8. Lee, N., S. Bae, H. Kim, J. M. Kong, H. R. Kim, B. J. Cho, S. J. Kim, S. H. Seok, Y. I. Hwang, S. Kim, J. S. Kang, and W. J. Lee. 2011. Inhibition of lytic reactivation of Kaposi's sarcoma- associated herpesvirus by alloferon. Antivir. Ther. 16: 17-26. https://doi.org/10.3851/IMP1709
  9. Bae, S., K. Oh, H. Kim, Y. Kim, H. R. Kim, Y. I. Hwang, D. S. Lee, J. S. Kang, and W. J. Lee. 2013. The effect of alloferon on the enhancement of NK cell cytotoxicity against cancer via the up-regulation of perforin/granzyme B secretion. Immunobiology 218: 1026-1033. https://doi.org/10.1016/j.imbio.2012.12.002
  10. Kim, Y., S. K. Lee, S. Bae, H. Kim, Y. Park, N. K. Chu, S. G. Kim, H. R. Kim, Y. I. Hwang, J. S. Kang, and W. J. Lee. 2013. The anti-inflammatory effect of alloferon on UVB-induced skin inflammation through the down-regulation of pro-inflammatory cytokines. Immunol. Lett. 149: 110-118. https://doi.org/10.1016/j.imlet.2012.09.005
  11. Lee, M. J., J. K. Lee, J. W. Choi, C. S. Lee, J. H. Sim, C. H. Cho, K. H. Lee, I. H. Cho, M. H. Chung, H. R. Kim, and S. K. Ye. 2012. Interleukin-6 induces S100A9 expression in colonic epithelial cells through STAT3 activation in experimental ulcerative colitis. PLoS One 7: e38801. https://doi.org/10.1371/journal.pone.0038801
  12. Sander, L. E., F. Obermeier, U. Dierssen, D. C. Kroy, A. K. Singh, U. Seidler, K. L. Streetz, H. H. Lutz, W. Muller, F. Tacke, and C. Trautwein. 2008. Gp130 signaling promotes development of acute experimental colitis by facilitating early neutrophil/macrophage recruitment and activation. J. Immunol. 181: 3586-3594. https://doi.org/10.4049/jimmunol.181.5.3586
  13. Lin, Y., X. Yang, W. Yue, X. Xu, B. Li, L. Zou, and R. He. 2014. Chemerin aggravates DSS-induced colitis by suppressing M2 macrophage polarization. Cell. Mol. Immunol. 11: 355-366. https://doi.org/10.1038/cmi.2014.15
  14. Li, B., R. Alli, P. Vogel, and T. L. Geiger. 2014. IL-10 modulates DSS-induced colitis through a macrophage-ROS-NO axis. Mucosal Immunol. 7: 869-878. https://doi.org/10.1038/mi.2013.103
  15. Jarry, A., C. Bossard, C. Bou-Hanna, D. Masson, E. Espaze, M. G. Denis, and C. L. Laboisse. 2008. Mucosal IL-10 and TGF-beta play crucial roles in preventing LPS-driven, IFN-gamma-mediated epithelial damage in human colon explants. J. Clin. Invest. 118: 1132-1142.
  16. Marrero, J. A., K. A. Matkowskyj, K. Yung, G. Hecht, and R. V. Benya. 2000. Dextran sulfate sodium-induced murine colitis activates NF-kappaB and increases galanin-1 receptor expression. Am. J. Physiol. Gastrointest. Liver Physiol. 278: G797-G804. https://doi.org/10.1152/ajpgi.2000.278.5.G797
  17. Andresen, L., V. L. Jorgensen, A. Perner, A. Hansen, J. Eugen-Olsen, and J. Rask-Madsen. 2005. Activation of nuclear factor kappaB in colonic mucosa from patients with collagenous and ulcerative colitis. Gut 54: 503-509. https://doi.org/10.1136/gut.2003.034165
  18. Rogler, G., K. Brand, D. Vogl, S. Page, R. Hofmeister, T. Andus, R. Knuechel, P. A. Baeuerle, J. Scholmerich, and V. Gross. 1998. Nuclear factor kappaB is activated in macrophages and epithelial cells of inflamed intestinal mucosa. Gastroenterology 115: 357-369. https://doi.org/10.1016/S0016-5085(98)70202-1
  19. Kanarek, N., N. London, O. Schueler-Furman, and Y. Ben-Neriah. 2010. Ubiquitination and degradation of the inhibitors of NFkappaB. Cold Spring Harb. Perspect. Biol. 2: a000166.
  20. Chandel, N. S., W. C. Trzyna, D. S. McClintock, and P. T. Schumacker. 2000. Role of oxidants in NF-kappa B activation and TNF-alpha gene transcription induced by hypoxia and endotoxin. J. Immunol. 165: 1013-1021. https://doi.org/10.4049/jimmunol.165.2.1013
  21. Hanauer, S. B. 2006. Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm. Bowel. Dis. 12 Suppl 1: S3-S9.
  22. Molodecky, N. A., I. S. Soon, D. M. Rabi, W. A. Ghali, M. Ferris, G. Chernoff, E. I. Benchimol, R. Panaccione, S. Ghosh, H. W. Barkema, and G. G. Kaplan. 2012. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142: 46-54. https://doi.org/10.1053/j.gastro.2011.10.001
  23. Ershov, F., A. Kubanova, B. Pinegin, A. Shulzhenko, G. Bekker, and S. Chernysh. 2003. Allokine-$\alpha$ effect on the course of chronic genital herpes relapses. Materia Medica 40: 103-111.
  24. Chernysh, S., and N. Gordja. 2011. The immune system of maggots of the blow fly (Calliphora vicina) as a source of medicinal drugs. J. Evol. Biochem. Physiol. 47: 524-533. https://doi.org/10.1134/S0022093011060032
  25. Taylor, B. S., M. E. de Vera, R. W. Ganster, Q. Wang, R. A. Shapiro, S. M. Morris, Jr., T. R. Billiar, and D. A. Geller. 1998. Multiple NF-kappaB enhancer elements regulate cytokine induction of the human inducible nitric oxide synthase gene. J. Biol. Chem. 273: 15148-15156. https://doi.org/10.1074/jbc.273.24.15148
  26. Neurath, M. F., S. Finotto, I. Fuss, M. Boirivant, P. R. Galle, and W. Strober. 2001. Regulation of T-cell apoptosis in inflammatory bowel disease: to die or not to die, that is the mucosal question. Trends Immunol. 22: 21-26. https://doi.org/10.1016/S1471-4906(00)01798-1
  27. Grivennikov, S., E. Karin, J. Terzic, D. Mucida, G. Y. Yu, S. Vallabhapurapu, J. Scheller, S. Rose-John, H. Cheroutre, L. Eckmann, and M. Karin. 2009. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15: 103-113. https://doi.org/10.1016/j.ccr.2009.01.001
  28. Jin, X., T. A. Zimmers, Z. Zhang, R. H. Pierce, and L. G. Koniaris. 2010. Interleukin-6 is an important in vivo inhibitor of intestinal epithelial cell death in mice. Gut 59: 186-196. https://doi.org/10.1136/gut.2008.151175
  29. Triantafillidis, J. K., G. Nasioulas, and P. A. Kosmidis. 2009. Colorectal cancer and inflammatory bowel disease: epidemiology, risk factors, mechanisms of carcinogenesis and prevention strategies. Anticancer Res. 29: 2727-2737.
  30. Ryu, M. J., V. Anikin, S. H. Hong, H. Jeon, Y. G. Yu, M. H. Yu, S. Chernysh, and C. Lee. 2008. Activation of NF-kappaB by alloferon through down-regulation of antioxidant proteins and IkappaBalpha. Mol. Cell. Biochem. 313: 91-102. https://doi.org/10.1007/s11010-008-9746-0
  31. Cheng, M., Y. Chen, W. Xiao, R. Sun, and Z. Tian. 2013. NK cell-based immunotherapy for malignant diseases. Cell. Mol.Immunol. 10: 230-252. https://doi.org/10.1038/cmi.2013.10

Cited by

  1. Inhibitory Effect of Alloferons in Combination with Human Lymphocytes on Human Herpesvirus 1 (HHV-1) Replication In Vitro vol.22, pp.2, 2015, https://doi.org/10.1007/s10989-015-9506-4
  2. Syk-Mediated Suppression of Inflammatory Responses by Cordyceps bassiana vol.45, pp.6, 2015, https://doi.org/10.1142/s0192415x17500677
  3. N -Methylcytisine Ameliorates Dextran-Sulfate-Sodium-Induced Colitis in Mice by Inhibiting the Inflammatory Response vol.23, pp.3, 2015, https://doi.org/10.3390/molecules23030510
  4. Copper(II) complexes with alloferon analogues containing phenylalanine H6F and H12F stability and biological activity lower stabilization of complexes compared to analogues containing t vol.11, pp.10, 2015, https://doi.org/10.1039/c9mt00182d