• Title/Summary/Keyword: Immobilized cell

Search Result 320, Processing Time 0.019 seconds

Removal of High Strength Hydrogen Sulfide Gas using a Bioreactor Immobilized with Acidithiobacillus ferrooxidans and a Chemical Absorption Scrubber (Acidithiobacillus ferrooxidans를 고정화한 생물반응기와 흡수탑을 이용한 고농도 황화수소 제거)

  • Ryu, Hui-Uk
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.4
    • /
    • pp.328-333
    • /
    • 2004
  • To treat a waste gas containing a high strength H2S, the two-stages microbial desulfurization process that conof a bioreactor immobilized with Acidithiobacillusferrooxidans and a chemical absorption scrubber has was proposed. After 4 times repeat of batch cultures, the immobilized bioreactor has been stabilized and the rate of iron oxidation reached 0.89 kg . $m^{-3}{\cdot}m^{-1}$ at steady state. The two-stages microbial desulfurization prowas able to be operated for a long term over 54 days. The removal efficiencies of H2S were 97-99% at a space velocity of 70 h-I and a inlet concentration of 37,000 ppmv. The maximum elimination capacity of H2S was approximately 3.3 kg S . $m^{-3}{\cdot}m^{-1}$. In the bioractor, the concentrations of the $Fe^{3+}$ and the immobilzed cell were constantly maintained during the desulfurization.

Bioluminescence Activity of Toluene Analogs by Alginate-immobilized Pseudomonas putida mt-2 KG1206 (고정화한 유전자 재조합 균주 Pseudomonas putida mt-2 KG1206의 톨루엔 계열 화합물에 대한 생물발광 활성 조사)

  • Kong, In-Chul;Jung, Hong-Kyung;Ko, Kyung-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.147-152
    • /
    • 2009
  • In this study, the applicability of alginate-immobilized Pseudomonas putida mt-2 KG1206 on the environments, contaminated with toluene analogs was conducted. Genetically engineered strain KG1206 produces light by direct (m-toluate, benzoate) and indirect (toluene, xylenes) inducers. The protocol for the alginate-immobilization was determined in terms of the cell to alginate ratio, solution, proper number of alginate beads, and other conditions. Maximum bioluminescences of five chemicals by immobilized strain were generally observed in following orders: m-toluate > p-xylene > toluene > o-xylene > m-xylene. In relationship between bioluminescence activity and inducer reduction, initial m-toluate (5 mM) in solution was removed approximately 48% of initial at 5 h exposure, showing continuous decrease of inducer chemical in solution. These results of study with alginate-immobilized beads would be useful, especially, for biomonitoring of contaminated environments with specific compounds, such as petroleum hydrocarbon compounds including toluene analogs.

Optimal Condition for Citric Acid Production from Milk Factory Waste Water by Using the Immobilized Cells of Aspergillus niger (고정화 Aspergillus niger 세포를 이용한 우유공장 폐수로부터 구연산 생산의 최적 조건)

  • 이용희;서명교;노호석;이동환;정경태;정영기
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.2
    • /
    • pp.154-157
    • /
    • 2004
  • Immobilized cells of Aspergillus niger was employed to produce citric acid by fermentation of milk factory waste water. A. niger ATCC 9142 as a citric acid production strain was cultured for 3 days and was entrapped with Ca-alginate bead about 2.5∼3.5 mm. The optimal pH and temperature were estimated to be 3.0 and $30^{\circ}C$, respectively. Dilution rate for fermentation was calculated to be $0.025 h^{-1}$ . Maximum amount of citric acid was obtained at 4.5 g/$\ell$ with the optimized fermentation condition. The yield of citric acid produced by immobilized A. niger ATCC 9143 was 70.3%. The yield was increased by 20% with immobilized cell, compared to that of the shake flask culture. Hence, the milk factory waste water is worthy to be used for the substrate of citric acid fermentation.

Development of PZT Piezoelectric Biosensor for the Detection of Formaldehyde (Formaldehyde 측정을 위한 PZT 압전 바이오센서 개발)

  • 김병옥;곽성곤;임동준
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.477-482
    • /
    • 1998
  • A biosensor with PZT piezoelectric ceramic crystal was developed for the detection of formaldehyde gas. Poled PZT piezoelectric ceramic disk was made from ZrO2, TiO2 and Nb2O5, together with the addition of PbO and polyvinyl alcohol, through various processes of mixing, calcination drying, crushing, forming, sintering, polishing, ion coating and poling. Oscillator circuit of sensor was made of operational amplifier(AD811AN). Formaldehyde dehydrogenase was immobilized onto a piezoelectic ceramic crystal, together with the cofactors, reduced glutathione and nicotinamide adenine dinucleotide. The effect of flow rate on the sensitivity was determined by varing the flow rate of carrier gas from 24.7mL/min to 111.7mL/min through detector cell. The results indicated that as the flow rate was increased, the recovery rate was increased. And a significant increase in the sensitivity was observed in enhanced flow rate of carrier gas. Frequency difference(ΔF) of immobilized PZT piezoelectic disk increased proportionally to the concentration gas and reproduced to repeated exposures of formaldehyde gas(28ppm, Δ68Hz).

  • PDF

Optimization of the Condition of Immobilized Photobacterium phosphoreum with Strontium Alginate (Strontium Alginate를 담체로 한 Photobacterium phosphoreum 고정화 조건의 최적화)

  • 이홍주;김현숙;정계훈;이은수;전억한
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.2
    • /
    • pp.136-144
    • /
    • 1999
  • Since the condition of immobilization must be optimized, it is very important to know whether and on how conditions bacterial cells retain their metabolic activity during immobilization process. A bioluminescence intensity had the maximum value when cell concentrations were between 1.0 and 1.2 measured at O.D660. The strontium alginate was used as an immobilization matrix and two independent factors for immobilization of Photobacterium phosphoreum with strontium alginate were optimized with the response surface methodology(RSM) considering degree of bioluminescence. As a result, the optimum concentration for immobilization was found to be 2.4%(w/w) for sodium alginate and 0.31M for strontium chloride, respectively. A dilution was carried out with 2.5%(w/v) NaCl solution that is an optimum environmental condition for growth of P. phosphoreum. Under the such condition of immobilization, hardness could be predicted as 4.66$\times$104N/$m^2$ and it took different time according to the volume of matrix to be immobilized completely.

  • PDF

Recognition of substrates by membrane potential

  • Yun, Kyu-sik;Tak, Tae-moon;Kim, Jong-ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.31-35
    • /
    • 1998
  • 1. INTRODUCTION : Recognition and binding of organic substrates by biological molecules are of vital importance in biophysics and biophysical chemistry. Most studies of the application focused on the development of biosensors, which detected reaction products generated by the binding between enzymes and substrates. Other types of biosensors in which membrane proteins (e.g., nicotinic acetylcholine receptor, auxin receptor ATPase, maltose bining protein, and glutmate receptor) were utilized as a receptor function were also developed. In the previous study[1], the shifts in membrane potential, caused by the injection of substrates into a permeation cell, were measured using immobilized glucose oxidase membranes. It was suggested that the reaction product was not the origin of the potential shifts, but the changes in the charge density in the membrane due to the binding between the enzyme and the substrates generated the potential shifts. In this study, $\gamma$-globulin was immobilized (entrapped) in a poly($\gamma$-amino acid) network, and the shifts in the membrane potential caused by the injection of some amino acids were investigated.

  • PDF

Development of Bioreactors for Hydrogen-Producing Immobilized Photosynthetic Bacteria(I) : Evaluation of lmmobilized CSTR for Hydrogen Productivity and Effectiveness Factor (광합성 박테리아를 이용한 고성능 수소 생산 고정화 생물반응기의 개발(I) 고정화 연속 교반탱크 반응기에서의 수소 생산성 및 효율인자 평가)

  • 선용호;한정우
    • KSBB Journal
    • /
    • v.8 no.3
    • /
    • pp.243-255
    • /
    • 1993
  • In this study, it was observed that hydrogen Productivity varied with stirrer speed, bead radius, input glucose concentration and dilution rate in a continuous stirred tank reactor in which immobilized R. rubrum KS-301 was used as a hydrogen-producing bacterium The mass transfer resistance due to cell immobilization was also studied. In order to estimate an effectiveness factor, Des of glucose was first obtained, which was subsequently represented by the correlation equation between Dos and Xb, As a result external mass transfer resistance could be neglected for stirrer speeds greater than 400rpn With bead radius increasing, the hydrogen productivity and internal effectiveness factor decreased. With input 91ucose concentration increasing, the hydrogen productivity and interval and external effectiveness factor increased. Although an Internal effectiveness factor was not affected, hydrogen productivity Increased with dilution rate increasing. An overall effectiveness factor remained nearly constant for the dilution rates investigate4 but increased with input 91ucose concentration increasing.

  • PDF

Development of Quartz Crystal Microbalance-Based Immunosensor for the Determination of Low-Density Lipoprotein (Quartz Crystal Microbalance 시스템을 이용한 저밀도 지질단백질측정용 면역센서의 개발)

  • 김상현;윤현철;감학성
    • KSBB Journal
    • /
    • v.13 no.4
    • /
    • pp.337-342
    • /
    • 1998
  • Immunosensor for the determination of LDL(Low-Density Lipoprotein), a good indicator for the diagnosis of atherosclerosis and hypercholesterolemia, was developed by using quartz crystal microbalance(QCM). The immunosensor consists of flow-through cell, oscillating circuit, oscilloscope, and frequency counter. FIA(Flow Injection Analysis) was applied to the QCM system for the measurement of LDL in liquid phase. Antibody showing binding affinity against LDL was immobilized on the gold electrode of a quartz crystal by covalent coupling via polyethylenimine / glutaredehyde. LDL was injected and bound to the antibody immobilized on the QCM immunosensor. The response of the immunosensor (F0 - F1) was found to be proportional to the LDL concentration from 200 $\mu\textrm{g}$/ml to 800 $\mu\textrm{g}$/ml. Operational conditions for the operation of immunosensor were also investigated in terms of sensitivity and non-specific binding.

  • PDF

Micropatterning of Peptides to Solid Surface by Deep-UV Lithography using N-hydroxysuccinimidyl phenol azide (N-hydroxysuccinimidyl phenyl azide와 광반응을 이용한 펩타이드의 마이크로형태 고정화)

  • 김진희;김현정;김종원;장준근;민병구;최태부
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.441-448
    • /
    • 1998
  • Defined spatial localization of biomolecules on the polymer surface Is potentially powerful method to generate biocompatible surface. Photolithography and photochemistry can be used to immobilize peptides only al a given region of the surface. In this study, peptide RGDS, one of the endothelial cells recognition sites of fibronectin, was covalently immobilized on the polystyrene coated surface with micropattern. It was performed by photochemical reactivity of a synthesized N-hydroxysuccinimidyl phenyl azide. The micropatterning was confirmed by staining with fluorescent dye, aminoacetamido fluorescein. Endothelial cell adhesion was observed only on the RGDS immobilized areas.

  • PDF

Modeling the effect of mass transfer on the kinetics of fructo-oligosaccharide production by immobilized cells (고정화 세포에 의한 Fructo-oligosaccharides 생산 반응메카니즘에서 물질전달 영향에 대한 수학적 모델)

  • 윤종원;전영중이민규송승구
    • KSBB Journal
    • /
    • v.8 no.3
    • /
    • pp.266-271
    • /
    • 1993
  • The effective diffusion coefficients of glucose, sucrose and fructo-oligosaccharides in Ca-alginate gel beads at high concentration of sucrose solutions were investigated at $50^{\circ}C$. A mathematical model for the kinetics of fructo-oligosaccharide production using immobilized cells was proposed and compared with experimental results varying the bead size, the substrate concentration and the bead ratio. Very low values of diffusion coefficients ranging $1.2-7.6\times10^{-7}\textrm{cm}^2$/sec were obtained, and the predicted results were in good agreement with experimental ones in all cases tested.

  • PDF