Removal of High Strength Hydrogen Sulfide Gas using a Bioreactor Immobilized with Acidithiobacillus ferrooxidans and a Chemical Absorption Scrubber

Acidithiobacillus ferrooxidans를 고정화한 생물반응기와 흡수탑을 이용한 고농도 황화수소 제거

  • Ryu, Hui-Uk (Department of Chemical and Environmental Engineerin& Soongsil University) ;
  • ;
  • 류희욱 (숭실대학교 환경, 화학공학과) ;
  • 이내윤 (이화여자대학교 환경학과) ;
  • 조경숙 (이화여자대학교 환경학과)
  • Published : 2004.12.01

Abstract

To treat a waste gas containing a high strength H2S, the two-stages microbial desulfurization process that conof a bioreactor immobilized with Acidithiobacillusferrooxidans and a chemical absorption scrubber has was proposed. After 4 times repeat of batch cultures, the immobilized bioreactor has been stabilized and the rate of iron oxidation reached 0.89 kg . $m^{-3}{\cdot}m^{-1}$ at steady state. The two-stages microbial desulfurization prowas able to be operated for a long term over 54 days. The removal efficiencies of H2S were 97-99% at a space velocity of 70 h-I and a inlet concentration of 37,000 ppmv. The maximum elimination capacity of H2S was approximately 3.3 kg S . $m^{-3}{\cdot}m^{-1}$. In the bioractor, the concentrations of the $Fe^{3+}$ and the immobilzed cell were constantly maintained during the desulfurization.

고농도의 황화수소 가스를 제거하기 위하여 철촉매인 $Fe^{3+}$ 을 생산할 수 있는 철산화 세균 A. ferrooxidans를 다공성 세라믹 담체에 고정화한 생물반응기와 황화수소가 $Fe^{3+}$ 와 화학반응에 의해 elemental sulfur로 제거되는 흡수탑 반응기로 구성된 2단계 생물학적 탈황공정을 연구하였다. 생물반응기는 4회 이상의 반복 회분식 배양을 통해 안정화 되었고, 정상상태에서의 평균 철산화 속도는 $0.89kg{\cdot}m^{-3}{\cdot}h^{-1}$ 이었다. 2단계 생물 탈황공정은 약 54일 동안 장기간 성공적으로 조업이 가능하였다. 흡수탑 반응기에서는 공간속도를 70 $h^{-1}$ 의 조건하에서 37.000 ppm의 고농도 $H_{2}S$ 제거 임계 부하량은 3.3 kg $S{\cdot}m^{-3}{\cdot}h^{-1}$ 로 우수하였다. 장기간 조업하는 동안 고정화 세포의 농도는 일정하게 유지되었다.

Keywords

References

  1. Barron, J. L. and D. R. Leuking. 1988. Growth and maintenance of Thiobacillus ferrooxidans cells. Appl. Environ. Microbiol. 54: 3101-3106
  2. Cho, K. S., H. W. Ryu, and N. Y. Lee. 2000. Biological deodorization of hydrogen sulfide using porous lava as a carrier of Thiobacillus thiooxidans. J. Biosci. Bioeng. 90: 25-31
  3. Cho, K.S., M. Hirai, and M. Shoda. 1992. Enhanced removal efficiency of malodorous gases in a pilot-scale peat biofilter inoculated with Thiobacillus thioparus DW44. J. Ferment. Bioeng. 73: 46-50
  4. Dalai, A.K., A. Majumdar, and E.L. Tollefson. 1999. Low Temperature catalytic oxidation of hydrogen sulfide in sour produced wastewater using activated carbon catalysts. Environ. Sci. Technol. 33: 2241-2246
  5. Gadre, R.V. 1989. Removal of hydrogen sulfide from biogas by chemoautotrophic fixed-film bioreactor. Biotechnol. Bioeng. 34: 410-414
  6. Halfmeier, H., W. Schafer-Treffenfeldt, and M. Reuss. 1993. Potential of Thiobacillus ferrooxidans for waste gas purification. Part 1. Kinetics of continuous ferrous iron oxidation. Appl. Microbiol. Biotechnol. 40: 416-420
  7. Jensen, A.B. and C. Webb. 1995. Ferrous sulfate oxidation using Thiobacillus ferrooxidans: A review. Pro. Biochem. 30: 225-236
  8. Jensen, A.B. and C. Webb. 1995. Treatment of $H_2$S-containing gases: A review of microbiological alternatives. Enz. Micro. Technol. 17: 2-10 https://doi.org/10.1016/0141-0229(94)00080-B
  9. Park S.J., H.J. Oh, and O. Seishi. 1992. The characteristic of odor emitted from sewage and nightsoil treatment plants in Korea. J. Odor Res. Eng. 24: 52-55
  10. Park, S.J., K.S. Cho, M. Hirai, and M. Shoda. 1993. Removability of malodorous gases from a night soil treatment plant by a pilot-scale peat biofilter inoculated with Thiobacillus thioparus DW44. J. Ferment. Bioeng. 76: 55-59
  11. Ryu, H.W., K.S. Cho, Y.K. Chang, S.D. Kim, and T. Mori. 1995. Refinement of low-grade clay by microbial removal of sulfur and iron compounds using Thiobacillus ferrooxidan. J. Ferment. Bioeng. 80: 46-52
  12. Sublette, K.L. 1987. Oxidation of hydrogen sulfide by Thiobacillus denitrificans: Desulfurization of natural gas. Biotechnol. Bioeng. 29: 249-257