• Title/Summary/Keyword: Immersive

Search Result 702, Processing Time 0.03 seconds

Intra Block Copy Analysis to Improve Coding Efficiency for Immersive Video (몰입형 비디오 압축을 위한 화면 내 블록 카피 성능 분석)

  • Lee, Soonbin;Jeong, Jong-Beom;Ryu, Il-Woong;Kim, Sungbin;Kim, Inae;Ryu, Eun-Seok
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.1-5
    • /
    • 2020
  • 최근 MPEG-I 그룹에서는 표준화가 진행중인 몰입형 미디어(Immersive Media)에 대한 압축 성능 탐색이 이루어지고 있다. 몰입형 비디오는 다수의 시점 영상과 깊이 맵을 통한 깊이 맵 기반 이미지 렌더링(DIBR)을 바탕으로 제한적 6DoF 을 제공하고자 하는 기술이다. 현재 MIV(Model for Immersive Video) 기술에서는 바탕 시점(Basic View)과 각 시점의 고유한 영상 정보를 패치 단위로 모아둔 추가 시점(Additional View)으로 처리하는 모델을 채택하고 있다. 그 중에서 추가 시점은 일반적인 영상과는 달리 시간적/공간적 상관성이 떨어지는 분절적인 형태로 이루어져 있어 비디오 인코더에 대해 최적화가 되어 있지 않으며, 처리 방법의 특성에 따라 자기 유사적인 형태를 지니게 된다. 따라서 MIV 에서 스크린 콘텐츠 코딩 성능과 함께 화면 내 블록 카피(IBC: intra block copy) 기술에 대한 성능을 분석 결과를 제시한다. IBC 미적용 대비 최대 7.56%의 Y-PSNR BD-rate 감소가 가능함을 확인하였으며, 영상의 특성에 따라 IBC 의 선택 비율을 확인하여 추가 시점의 효율적인 압축 형태를 고찰한다.

  • PDF

Hazard Recognition and Construction Safety Training Efficacy using Interactive Virtual Reality (VR)

  • Saiyad, Meeranali;Rybkowski, Zofia K.;Suermann, Patrick;Dixit, Manish;Luhan, Gregory;Shanbari, Hamzah
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1209-1216
    • /
    • 2022
  • The majority of construction site incidents occur due to a lack of hazard awareness among workers on job sites. This lack of awareness is despite mandatory construction safety training, typically in the form of written content (safety manuals) or of images depicting hazards. To reduce job-site injuries and fatalities, general contractors have started adopting Virtual Reality (VR) to impart safety training to job site personnel. VR safety training can take the form of an immersive simulation comprising potential safety hazards intentionally embedded into a virtual job site; users are required to identify these hazards within a specified time frame with the expectation that they will be more adept at recognizing hazards on an actual job-site, resulting in fewer accidents. This research study seeks to identify the actual impacts of VR on construction safety awareness among participants. The research addresses the following question: Does VR improve hazard recognition awareness? The primary objective is to evaluate participants' performance of past construction safety awareness against present construction safety awareness after receiving VR training. Participants were asked to complete a multiple-choice Qualtrics™ questionnaire. The results of the study showed a statistically significant knowledge gain advantage with respect to hazard recognition and construction safety awareness with the use of interactive, immersive VR over a more conventional and passive safety training method.

  • PDF

Wider Depth Dynamic Range Using Occupancy Map Correction for Immersive Video Coding (몰입형 비디오 부호화를 위한 점유맵 보정을 사용한 깊이의 동적 범위 확장)

  • Lim, Sung-Gyun;Hwang, Hyeon-Jong;Oh, Kwan-Jung;Jeong, Jun Young;Lee, Gwangsoon;Kim, Jae-Gon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1213-1215
    • /
    • 2022
  • 몰입형 비디오 부호화를 위한 MIV(MPEG Immersive Video) 표준은 제한된 3D 공간의 다양한 위치의 뷰(view)들을 효율적으로 압축하여 사용자에게 임의의 위치 및 방향에 대한 6 자유도(6DoF)의 몰입감을 제공한다. MIV 의 참조 소프트웨어인 TMIV(Test Model for Immersive Video)에서는 복수의 뷰 간 중복되는 영역을 제거하여 전송할 화소수를 줄이기 때문에 복호화기에서 렌더링(rendering)을 위해서 각 화소의 점유(occupancy) 정보도 전송되어야 한다. TMIV 는 점유맵을 깊이(depth) 아틀라스(atlas)에 포함하여 압축 전송하고, 부호화 오류로 인한 점유 정보 손실을 방지하기 위해 깊이값 표현을 위한 동적 범위의 일부를 보호대역(guard band)으로 할당한다. 이 보호대역을 줄여서 더 넓은 깊이값의 동적 범위를 사용하면 렌더링 화질을 개선시킬 수 있다. 따라서, 본 논문에서는 현재 TMIV 의 점유 정보 오류 분석을 바탕으로 이를 보정하는 기법을 제시하고, 깊이 동적 범위 확장에 따른 부호화 성능을 분석한다. 제안기법은 기존의 TMIV 와 비교하여 평균 1.3%의 BD-rate 성능 향상을 보여준다.

  • PDF

Performance Evaluation of ARCore Anchors According to Camera Tracking

  • Shinhyup Lee;Leehwan Hwang;Seunghyun Lee;Taewook Kim;Soonchul Kwon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.215-222
    • /
    • 2023
  • Augmented reality (AR), which integrates virtual media into reality, is increasingly utilized across various industrial sectors, thanks to advancements in 3D graphics and mobile device technologies. The IT industry is thus carrying out active R&D activities about AR platforms. Google plays a significant role in the AR landscape, with a focus on ARCore services. An essential aspect of ARCore is the use of anchors, which serve as reference points that help maintain the position and orientation of virtual objects within the physical environment. However, if the accuracy of anchor positioning is suboptimal when running AR content, it can significantly diminish the user's immersive experience. We are to assess the performance of these anchors in this study. To conduct the performance evaluation, virtual 3D objects, matching the shape and size of real-world objects, we strategically positioned ourselves to overlap with their physical counterparts. Images of both real and virtual objects were captured from five distinct camera trajectories, and ARCore's performance was analyzed by examining the difference between these captured images.

The Effects of Training with Immersive Virtual Reality Devices on Balance, Walking and Confidence in Chronic Stroke Patients

  • Hyun-min Moon;Ho-dong Gwak;Jang-hoon Shin;Na-eun Byeon;Wan-hee Lee
    • Physical Therapy Rehabilitation Science
    • /
    • v.13 no.2
    • /
    • pp.250-260
    • /
    • 2024
  • Objective: This study aimed to explore the effects of balance training using fully immersive VR devices on the balance and walking abilities of stroke patients. Design: Randomized controlled trial Methods: This study involved 54 stroke patients divided into three groups: VRT(VR and traditional physical therapy), VR(VR only), and TPT(traditional physical therapy only). Interventions were administered twice daily for 30 minutes over eight weeks. Outcome measures included the Berg Balance Scale, Timed Up and Go Test, 10-meter walk test, gait analysis, and Activities-specific Balance Confidence Scale. Results: The VRT and VR groups showed significant effects on spatiotemporal variables and confidence compared to the TPT group (p<0.05). Specifically, the VR group demonstrated superior effects in TUG, 10MWT, velocity, stride length, single-leg support, and ABC compared to the other two groups (p<0.05). Conclusions: Fully immersive VR balance training had a positive impact on balance, walking, and confidence in chronic stroke patients. Traditional physical therapy alone showed limited effectiveness, highlighting the potential of VR-based interventions in stroke rehabilitation. These findings underscore the importance of integrating VR technology into clinical practice to enhance outcomes for stroke survivors.

A Study on Immersive Interaction Between HMD User and Non-HMD User for Presence of Asymmetric Virtual Reality (비대칭 가상현실에서의 현존감을 위한 HMD 사용자와 Non-HMD 사용자간 몰입형 상호작용에 관한 연구)

  • Lee, Jiwon;Kim, Mingyu;Kim, Jinmo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.3
    • /
    • pp.1-10
    • /
    • 2018
  • This study proposes an immersive interaction optimized for the user's experience environment to provide an improved presence for both HMD and Non-HMD users in the asymmetric virtual reality (VR) environment. The core of the proposed immersive interaction is to distinguish the differences of the asymmetric environment between the HMD and Non-HMD users and present the optimized interaction to the user. And, in order to increase the presence by providing improved immersion in the asymmetric virtual reality environment given to each user, we design the walking interaction to improve the immersion of space for the HMD users, a hand-based interface that improves immersion by fully understanding and managing the situation through direct control. Finally, through the experiment using questionnaire, it is verified that the immersive interaction provides all users with an enhanced presence and specialized experience in each environment experience. Through these processes, we confirmed that the Non-HMD user can be immersed in an asymmetric virtual reality using by proposed interaction as participant rather than assistant with HMD user.

The Effects of Occupational Therapy Intervention Using Fully Immersive Virtual Reality Device on Upper Extremity Function of Patients With Chronic Stoke: Case Study (완전 몰입형 가상현실 기기를 이용한 작업치료 중재가 만성 뇌졸중 환자의 상지기능에 미치는 영향: 사례연구)

  • Han, Soul;Yoo, Eun-Young
    • Therapeutic Science for Rehabilitation
    • /
    • v.7 no.2
    • /
    • pp.17-27
    • /
    • 2018
  • Objective : The purpose of this study was to investigate the effect of occupational therapy intervention using a fully immersive virtual reality device on the upper extremity function of patients with chronic stroke. Methods : This study used a single subject (ABA) design. The study subjects was a chronic stroke patient with left lateral deviation. Four baseline periods, 12 intervention periods, and 4 baseline regression periods were performed for a total of 20 sessions for 10 weeks. OT intervention with a fully immersive virtual reality device was used every 30 minutes. BBT and WMFT evaluations were performed at each session and the results were displayed in a line graph. Results : The patient's upper limb function has improved. During baseline recurrence, efficacy of treatment was confirmed after removal of intervention, but no significant changes were observed. Conclusion : It has been found that OT intervention with a fully immersive virtual reality device for upper limb function in chronic stroke patients is an effective intervention. However, the effectiveness of maintaining treatment is not important, so we need to develop an easy-to-use home intervention program.

Light ID and HMD-AR Based Interactive Exhibition Design for Jeonju Hanok Village Immersive 3D View (전주 한옥마을의 실감 3D View를 위한 Light ID 및 HMD-AR 기반 인터렉티브 전시 설계)

  • Min, Byung-Jun;Mariappan, Vinayagam;Cha, Jae-Sang;Kim, Dae-Young;Cho, Ju-Phil
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.414-420
    • /
    • 2018
  • The digital convergence looking for new ways to engage visitors by superimposing virtual content on projection over the real world captured media contents. This paper propose the Light ID based interactive 3D immersive exhibition things view using HMD AR technology. This approach does not required to add any additional infrastructure to be built-in to enable service and uses the installed Lighting or displays devices in the exhibit area. In this approach, the Light ID can be used as a Location Identifier and communication medium to access the content unlike the QR Tag which supports provide the download information through web interface. This utilize the advantages of camera based optical wireless communication (OWC) to receive the media content on smart device to deliver immersive 3D content visualization using AR. The proposed exhibition method is emulated on GALAXY S8 smart phone and the visual performance is evaluated for Jeonju Hanok Village. The experimental results shows that the proposed method can give immersive 3D view for exhibit things in real-time.

An Atlas Generation Method with Tiny Blocks Removal for Efficient 3DoF+ Video Coding (효율적인 3DoF+ 비디오 부호화를 위한 작은 블록 제거를 통한 아틀라스 생성 기법)

  • Lim, Sung-Gyun;Kim, Hyun-Ho;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.25 no.5
    • /
    • pp.665-671
    • /
    • 2020
  • MPEG-I is actively working on standardization on the coding of immersive video which provides up to 6 degree of freedom (6DoF) in terms of viewpoint. 3DoF+ video, which provides motion parallax to omnidirectional view of 360 video, renders a view at any desired viewpoint using multiple view videos acquisitioned in a limited 3D space covered with upper body motion at a fixed position. The MPEG-I visual group is developing a test model called TMIV (Test Model for Immersive Video) in the process of development of the standard for 3DoF+ video coding. In the TMIV, the redundancy between a set of input view videos is removed, and several atlases are generated by packing patches including the remaining texture and depth regions into frames as compact as possible, and coded. This paper presents an atlas generation method that removes small-sized blocks in the atlas for more efficient 3DoF+ video coding. The proposed method shows a performance improvement of BD-rate bit savings of 0.7% and 1.4%, respectively, in natural and graphic sequences compared to TMIV.

User-based Theories and Practices on Virtual Reality (가상현실에 관한 사용자 관점의 이론과 실제)

  • Chung, Dong-Hun
    • Informatization Policy
    • /
    • v.24 no.1
    • /
    • pp.3-29
    • /
    • 2017
  • The purpose of this research is to understand immersive media such as virtual reality, augmented reality, mixed reality, 360-degree videos etc. from the perspective of user-based approach. 3D videos were once expected as the next-generation industry, but soon it further evolved into UHD and are now followed by immersive media represented by virtual reality. As the virtual reality plays an important role, the current research tries to bring up implications that can be applied to the industrial field along with academic understanding through six theoretical approaches related to virtual reality such as media richness, interactivity, presence, body-ownership, user experience, and visual perception. These six theories were used in immersive media studies such as 3D videos. Media richness and interactivity are the main factors forming positive or negative attitude, presence explains why users are immersed, user experience accounts for total psychological reaction, and visual perception explains how complex the experience of seeing is. Especially, although there is less media research applied, the body-ownership is likely to be not only used in virtual reality research, but immersive media research. The user-based theories related to virtual reality will provide various implications for immersive media researchers as well as hardware and content creators of virtual reality.