• Title/Summary/Keyword: Imbalanced data

Search Result 151, Processing Time 0.027 seconds

A Study of a Method for Maintaining Accuracy Uniformity When Using Long-tailed Dataset (불균형 데이터세트 학습에서 정확도 균일화를 위한 학습 방법에 관한 연구)

  • Geun-pyo Park;XinYu Piao;Jong-Kook Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.585-587
    • /
    • 2023
  • Long-tailed datasets have an imbalanced distribution because they consist of a different number of data samples for each class. However, there are problems of the performance degradation in tail-classes and class-accuracy imbalance for all classes. To address these problems, this paper suggests a learning method for training of long-tailed dataset. The proposed method uses and combines two methods; one is a resampling method to generate a uniform mini-batch to prevent the performance degradation in tail-classes, and the other is a reweighting method to address the accuracy imbalance problem. The purpose of our proposed method is to train the learning models to have uniform accuracy for each class in a long-tailed dataset.

Ensemble Composition Methods for Binary Classification of Imbalanced Data (불균형 데이터의 이진 분류를 위한 앙상블 구성 방법)

  • Yeong-Hun Kim;Ju-Hing Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.689-691
    • /
    • 2023
  • 불균형 데이터의 분류의 성능을 향상시키기 위한 앙상블 구성 방법에 관하여 연구한다. 앙상블의 성능은 앙상블을 구성한 기계학습 모델 간의 상호 다양성에 큰 영향을 받는다. 기존 방법에서는 앙상블에 속할 모델 간의 상호 다양성을 높이기 위해 Feature Engineering 을 사용하여 다양한 모델을 만들어 사용하였다. 그럼에도 생성된 모델 가운데 유사한 모델들이 존재하며 이는 상호 다양성을 낮추고 앙상블 성능을 저하시키는 문제를 가지고 있다. 불균형 데이터의 경우에는 유사 모델 판별을 위한 기존 다양성 지표가 다수 클래스에 편향된 수치를 산출하기 때문에 적합하지 않다. 본 논문에서는 기존 다양성 지표를 개선하고 가지치기 방안을 결합하여 유사 모델을 판별하고 상호 다양성이 높은 후보 모델들을 앙상블에 포함시키는 방법을 제안한다. 실험 결과로써 제안한 방법으로 구성된 앙상블이 불균형이 심한 데이터의 분류 성능을 향상시킴을 확인하였다.

Detection of Anomaly Lung Sound using Deep Temporal Feature Extraction (깊은 시계열 특성 추출을 이용한 폐 음성 이상 탐지)

  • Kim-Ngoc T. Le;Gyurin Byun;Hyunseung Choo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.605-607
    • /
    • 2023
  • Recent research has highlighted the effectiveness of Deep Learning (DL) techniques in automating the detection of lung sound anomalies. However, the available lung sound datasets often suffer from limitations in both size and balance, prompting DL methods to employ data preprocessing such as augmentation and transfer learning techniques. These strategies, while valuable, contribute to the increased complexity of DL models and necessitate substantial training memory. In this study, we proposed a streamlined and lightweight DL method but effectively detects lung sound anomalies from small and imbalanced dataset. The utilization of 1D dilated convolutional neural networks enhances sensitivity to lung sound anomalies by efficiently capturing deep temporal features and small variations. We conducted a comprehensive evaluation of the ICBHI dataset and achieved a notable improvement over state-of-the-art results, increasing the average score of sensitivity and specificity metrics by 2.7%.

Securing SCADA Systems: A Comprehensive Machine Learning Approach for Detecting Reconnaissance Attacks

  • Ezaz Aldahasi;Talal Alkharobi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.1-12
    • /
    • 2023
  • Ensuring the security of Supervisory Control and Data Acquisition (SCADA) and Industrial Control Systems (ICS) is paramount to safeguarding the reliability and safety of critical infrastructure. This paper addresses the significant threat posed by reconnaissance attacks on SCADA/ICS networks and presents an innovative methodology for enhancing their protection. The proposed approach strategically employs imbalance dataset handling techniques, ensemble methods, and feature engineering to enhance the resilience of SCADA/ICS systems. Experimentation and analysis demonstrate the compelling efficacy of our strategy, as evidenced by excellent model performance characterized by good precision, recall, and a commendably low false negative (FN). The practical utility of our approach is underscored through the evaluation of real-world SCADA/ICS datasets, showcasing superior performance compared to existing methods in a comparative analysis. Moreover, the integration of feature augmentation is revealed to significantly enhance detection capabilities. This research contributes to advancing the security posture of SCADA/ICS environments, addressing a critical imperative in the face of evolving cyber threats.

Fire Detection Based on Image Learning by Collaborating CNN-SVM with Enhanced Recall

  • Yongtae Do
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.119-124
    • /
    • 2024
  • Effective fire sensing is important to protect lives and property from the disaster. In this paper, we present an intelligent visual sensing method for detecting fires based on machine learning techniques. The proposed method involves a two-step process. In the first step, fire and non-fire images are used to train a convolutional neural network (CNN), and in the next step, feature vectors consisting of 256 values obtained from the CNN are used for the learning of a support vector machine (SVM). Linear and nonlinear SVMs with different parameters are intensively tested. We found that the proposed hybrid method using an SVM with a linear kernel effectively increased the recall rate of fire image detection without compromising detection accuracy when an imbalanced dataset was used for learning. This is a major contribution of this study because recall is important, particularly in the sensing of disaster situations such as fires. In our experiments, the proposed system exhibited an accuracy of 96.9% and a recall rate of 92.9% for test image data.

Joint streaming model for backchannel prediction and automatic speech recognition

  • Yong-Seok Choi;Jeong-Uk Bang;Seung Hi Kim
    • ETRI Journal
    • /
    • v.46 no.1
    • /
    • pp.118-126
    • /
    • 2024
  • In human conversations, listeners often utilize brief backchannels such as "uh-huh" or "yeah." Timely backchannels are crucial to understanding and increasing trust among conversational partners. In human-machine conversation systems, users can engage in natural conversations when a conversational agent generates backchannels like a human listener. We propose a method that simultaneously predicts backchannels and recognizes speech in real time. We use a streaming transformer and adopt multitask learning for concurrent backchannel prediction and speech recognition. The experimental results demonstrate the superior performance of our method compared with previous works while maintaining a similar single-task speech recognition performance. Owing to the extremely imbalanced training data distribution, the single-task backchannel prediction model fails to predict any of the backchannel categories, and the proposed multitask approach substantially enhances the backchannel prediction performance. Notably, in the streaming prediction scenario, the performance of backchannel prediction improves by up to 18.7% compared with existing methods.

Optimal Ratio of Data Oversampling Based on a Genetic Algorithm for Overcoming Data Imbalance (데이터 불균형 해소를 위한 유전알고리즘 기반 최적의 오버샘플링 비율)

  • Shin, Seung-Soo;Cho, Hwi-Yeon;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.49-55
    • /
    • 2021
  • Recently, with the development of database, it is possible to store a lot of data generated in finance, security, and networks. These data are being analyzed through classifiers based on machine learning. The main problem at this time is data imbalance. When we train imbalanced data, it may happen that classification accuracy is degraded due to over-fitting with majority class data. To overcome the problem of data imbalance, oversampling strategy that increases the quantity of data of minority class data is widely used. It requires to tuning process about suitable method and parameters for data distribution. To improve the process, In this study, we propose a strategy to explore and optimize oversampling combinations and ratio based on various methods such as synthetic minority oversampling technique and generative adversarial networks through genetic algorithms. After sampling credit card fraud detection which is a representative case of data imbalance, with the proposed strategy and single oversampling strategies, we compare the performance of trained classifiers with each data. As a result, a strategy that is optimized by exploring for ratio of each method with genetic algorithms was superior to previous strategies.

Research on the Financial Data Fraud Detection of Chinese Listed Enterprises by Integrating Audit Opinions

  • Leiruo Zhou;Yunlong Duan;Wei Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3218-3241
    • /
    • 2023
  • Financial fraud undermines the sustainable development of financial markets. Financial statements can be regarded as the key source of information to obtain the operating conditions of listed companies. Current research focuses more on mining financial digital data instead of looking into text data. However, text data can reveal emotional information, which is an important basis for detecting financial fraud. The audit opinion of the financial statement is especially the fair opinion of a certified public accountant on the quality of enterprise financial reports. Therefore, this research was carried out by using the data features of 4,153 listed companies' financial annual reports and audits of text opinions in the past six years, and the paper puts forward a financial fraud detection model integrating audit opinions. First, the financial data index database and audit opinion text database were built. Second, digitized audit opinions with deep learning Bert model was employed. Finally, both the extracted audit numerical characteristics and the financial numerical indicators were used as the training data of the LightGBM model. What is worth paying attention to is that the imbalanced distribution of sample labels is also one of the focuses of financial fraud research. To solve this problem, data enhancement and Focal Loss feature learning functions were used in data processing and model training respectively. The experimental results show that compared with the conventional financial fraud detection model, the performance of the proposed model is improved greatly, with Area Under the Curve (AUC) and Accuracy reaching 81.42% and 78.15%, respectively.

CAB: Classifying Arrhythmias based on Imbalanced Sensor Data

  • Wang, Yilin;Sun, Le;Subramani, Sudha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2304-2320
    • /
    • 2021
  • Intelligently detecting anomalies in health sensor data streams (e.g., Electrocardiogram, ECG) can improve the development of E-health industry. The physiological signals of patients are collected through sensors. Timely diagnosis and treatment save medical resources, promote physical health, and reduce complications. However, it is difficult to automatically classify the ECG data, as the features of ECGs are difficult to extract. And the volume of labeled ECG data is limited, which affects the classification performance. In this paper, we propose a Generative Adversarial Network (GAN)-based deep learning framework (called CAB) for heart arrhythmia classification. CAB focuses on improving the detection accuracy based on a small number of labeled samples. It is trained based on the class-imbalance ECG data. Augmenting ECG data by a GAN model eliminates the impact of data scarcity. After data augmentation, CAB classifies the ECG data by using a Bidirectional Long Short Term Memory Recurrent Neural Network (Bi-LSTM). Experiment results show a better performance of CAB compared with state-of-the-art methods. The overall classification accuracy of CAB is 99.71%. The F1-scores of classifying Normal beats (N), Supraventricular ectopic beats (S), Ventricular ectopic beats (V), Fusion beats (F) and Unclassifiable beats (Q) heartbeats are 99.86%, 97.66%, 99.05%, 98.57% and 99.88%, respectively. Unclassifiable beats (Q) heartbeats are 99.86%, 97.66%, 99.05%, 98.57% and 99.88%, respectively.

Tropospheric Anomaly Detection in Multi-Reference Stations Environment during Localized Atmospheric Conditions-(2) : Analytic Results of Anomaly Detection Algorithm

  • Yoo, Yun-Ja
    • Journal of Navigation and Port Research
    • /
    • v.40 no.5
    • /
    • pp.271-278
    • /
    • 2016
  • Localized atmospheric conditions between multi-reference stations can bring the tropospheric delay irregularity that becomes an error terms affecting positioning accuracy in network RTK environment. Imbalanced network error can affect the network solutions and it can corrupt the entire network solution and degrade the correction accuracy. If an anomaly could be detected before the correction message was generated, it is possible to eliminate the anomalous satellite that can cause degradation of the network solution during the tropospheric delay anomaly. An atmospheric grid that consists of four meteorological stations was used to detect an inhomogeneous weather conditions and tropospheric anomaly applied AWSs (automatic weather stations) meteorological data. The threshold of anomaly detection algorithm was determined based on the statistical weather data of AWSs for 5 years in an atmospheric grid. From the analytic results of anomaly detection algorithm it showed that the proposed algorithm can detect an anomalous satellite with an anomaly flag generation caused tropospheric delay anomaly during localized atmospheric conditions between stations. It was shown that the different precipitation condition between stations is the main factor affecting tropospheric anomalies.