• Title/Summary/Keyword: Imbalanced Data

Search Result 162, Processing Time 0.023 seconds

Class-Balanced Loss를 이용한 이미지 분류 (Image Classification using Class-Balanced Loss)

  • 박지희;황원준
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 추계학술대회
    • /
    • pp.164-166
    • /
    • 2022
  • Long-tail problem은 class 별로 sample의 개수에 차이가 있어 성능에 안 좋은 영향을 미치는 것을 말한다. 본 논문에서는 cost-sensitive learning 중 Class-Balanced Loss를 이용해 성능을 개선하여 Long-tail problem을 해결하려고 한다. 먼저, balanced data set과 imbalanced data set의 성능 차이를 살펴보도록 할 것이다. 그 후, Class-Balanced Loss를 3가지 버전으로 이용해 그 성능을 측정하고 분석해 볼 것이다.

  • PDF

불균형 데이터 환경에서 로지스틱 회귀모형을 이용한 Cochlodinium polykrikoides 적조 탐지 기법 연구 (Study on Detection Technique for Cochlodinium polykrikoides Red tide using Logistic Regression Model under Imbalanced Data)

  • 박수호;김흥민;김범규;황도현;엥흐자리갈 운자야;윤홍주
    • 한국전자통신학회논문지
    • /
    • 제13권6호
    • /
    • pp.1353-1364
    • /
    • 2018
  • 본 연구에서는 불균형 데이터 환경에서 기계학습 기법의 한 갈래인 로지스틱 회귀모형을 이용하여 인공위성 영상에서 Cochlodinium polykrikoides 적조 픽셀을 탐지하는 방법을 제안한다. 학습자료로 적조, 청수, 탁수 해역에서 추출된 수출광량 분광 프로파일을 활용하였다. 전체 데이터셋의 70%를 추출하여 모형 학습에 활용하였으며, 나머지 30%를 이용하여 모형의 분류 정확도를 평가하였다. 이 때, 청수와 탁수에 비해 자료 수가 상대적으로 적은 적조의 분광 프로파일에 백색 잡음을 추가하여 오버샘플링을 하여 불균형 데이터 문제를 해결하였다. 정확도 평가 결과 본 연구에서 제안하는 알고리즘은 약 94%의 분류 정확도를 보였다.

COPD 코호트 자료에서의 Machine Learning 방법론 비교 (Comparison of Machine Learning Methodology in COPD Cohort Data)

  • 정현명;박헌진;이진국;이종민
    • 한국빅데이터학회지
    • /
    • 제2권2호
    • /
    • pp.115-128
    • /
    • 2017
  • 최근 머신러닝 방법은 높은 예측력과 함께 널리 이용되지만 머신러닝을 제대로 활용하기 위해서 데이터가 가진 한계를 통계적 기법으로 해결한다면 기존보다 더 높은 예측력을 이끌어 낼 수 있다. 본 연구에서는 Longitudinal and Imbalanced Data에서 SMOTE 방법을 활용하여 불균형 문제를 해결한 결과 예측력이 증가하는 것을 확인할 수 있었다. 추가적으로 만성폐쇄성폐질환 급성악화 관련 연구가 활발히 이루어지고 있지만 급성악화와 관련 있는 요인을 찾는 연구만 이루어지고 있어 여러 요인들에 대한 복합적인 관철과 예측모형을 통한 급성악화 예측 연구는 이루어지지 않는다. 본 연구에서는 여러 요인을 같이 살펴봤을 때 어떤 요인들이 만성폐쇄성폐질환 급성악화와 관련이 있는지 확인하고 개인 맞춤형 특정 질환 예측 모형을 구축하였다.

  • PDF

데이터 이산화와 러프 근사화 기술에 기반한 중요 임상검사항목의 추출방법: 담낭 및 담석증 질환의 감별진단에의 응용 (Extraction Method of Significant Clinical Tests Based on Data Discretization and Rough Set Approximation Techniques: Application to Differential Diagnosis of Cholecystitis and Cholelithiasis Diseases)

  • 손창식;김민수;서석태;조윤경;김윤년
    • 대한의용생체공학회:의공학회지
    • /
    • 제32권2호
    • /
    • pp.134-143
    • /
    • 2011
  • The selection of meaningful clinical tests and its reference values from a high-dimensional clinical data with imbalanced class distribution, one class is represented by a large number of examples while the other is represented by only a few, is an important issue for differential diagnosis between similar diseases, but difficult. For this purpose, this study introduces methods based on the concepts of both discernibility matrix and function in rough set theory (RST) with two discretization approaches, equal width and frequency discretization. Here these discretization approaches are used to define the reference values for clinical tests, and the discernibility matrix and function are used to extract a subset of significant clinical tests from the translated nominal attribute values. To show its applicability in the differential diagnosis problem, we have applied it to extract the significant clinical tests and its reference values between normal (N = 351) and abnormal group (N = 101) with either cholecystitis or cholelithiasis disease. In addition, we investigated not only the selected significant clinical tests and the variations of its reference values, but also the average predictive accuracies on four evaluation criteria, i.e., accuracy, sensitivity, specificity, and geometric mean, during l0-fold cross validation. From the experimental results, we confirmed that two discretization approaches based rough set approximation methods with relative frequency give better results than those with absolute frequency, in the evaluation criteria (i.e., average geometric mean). Thus it shows that the prediction model using relative frequency can be used effectively in classification and prediction problems of the clinical data with imbalanced class distribution.

SMOTE와 Light GBM 기반의 불균형 데이터 개선 기법 (Imbalanced Data Improvement Techniques Based on SMOTE and Light GBM)

  • 한영진;조인휘
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권12호
    • /
    • pp.445-452
    • /
    • 2022
  • 디지털 세상에서 불균형 데이터에 대한 클래스 분포는 중요한 부분이며 사이버 보안에 큰 의미를 차지한다. 불균형 데이터의 비정상적인 활동을 찾고 문제를 해결해야 한다. 모든 트랜잭션의 패턴을 추적할 수 있는 시스템이 필요하지만, 일반적으로 패턴이 비정상인 불균형 데이터로 기계학습을 하면 소수 계층에 대한 성능은 무시되고 저하되며 예측 모델은 부정확하게 편향될 수 있다. 본 논문에서는 불균형 데이터 세트를 해결하기 위한 접근 방식으로 Synthetic Minority Oversampling Technique(SMOTE)와 Light GBM 알고리즘을 이용하여 추정치를 결합하여 대상 변수를 예측하고 정확도를 향상시켰다. 실험 결과는 Logistic Regression, Decision Tree, KNN, Random Forest, XGBoost 알고리즘과 비교하였다. 정확도, 재현율에서는 성능이 모두 비슷했으나 정밀도에서는 2개의 알고리즘 Random Forest 80.76%, Light GBM 97.16% 성능이 나왔고, F1-score에서는 Random Forest 84.67%, Light GBM 91.96% 성능이 나왔다. 이 실험 결과로 Light GBM은 성능이 5개의 알고리즘과 비교하여 편차없이 비슷하거나 최대 16% 향상됨을 접근 방식으로 확인할 수 있었다.

특징 분해를 이용한 얼굴 나이 분류 및 합성 (Facial Age Classification and Synthesis using Feature Decomposition)

  • 김찬호;박인규
    • 방송공학회논문지
    • /
    • 제28권2호
    • /
    • pp.238-241
    • /
    • 2023
  • 최근 인공지능 모델을 이용한 얼굴인식, 얼굴 수정 등 다양한 얼굴 작업들이 실생활에도 광범위하게 사용되고 있다. 그러나 모델의 학습에 사용되는 대부분의 얼굴 데이터셋은 사회활동이 활발한 특정 나이에 편중되고, 어린아이나 노인의 데이터가 적은 경향이 있다. 이와 같은 데이터셋 불균형 문제는 모델의 학습에도 좋지 않은 영향을 끼쳐, 아이나 노인같이 데이터가 적은 나이의 사람이 인공지능 모델을 사용할 때 사회활동이 활발한 나이의 사람이 사용할 때보다 성능이 떨어질 수 있고, 이들의 인공지능 모델 사용을 어렵게 할 가능성이 높다. 이를 개선하기 위해 본 논문은 특징 분해를 활용하여 얼굴 영상으로부터 나이를 분류하고 목표 나이로 합성하는 기법을 제안한다. 제안하는 기법은 FFHQ-Aging 데이터셋을 이용한 정량적, 정성적 평가를 통해 기존의 방법보다 더 나은 성능을 보인다.

SVM 모델을 이용한 3차원 패치 기반 단백질 상호작용 사이트 예측기법 (Prediction of Protein-Protein Interaction Sites Based on 3D Surface Patches Using SVM)

  • 박성희
    • 정보처리학회논문지D
    • /
    • 제19D권1호
    • /
    • pp.21-28
    • /
    • 2012
  • 모노머 단백질의 상호작용 사이트 예측은 기능을 알지 못하는 단백질에 대해서 이것과 상호작용하는 단백질로부터 기능을 예측하거나 단백질 도킹을 위한 검색 공간의 감소에 중요한 역할을 한다. 그러나 상호작용사이트 예측은 대부분 단백질 상호작용이 세포 내에서 순간적 반응에 일어나는 약한 상호작용으로 실험에 의한 3차원 결정 구조 식별의 어려움이 따르며 이로 인해 3차원의 복합체 데이터가 제한적으로 양산된다. 이 논문에서는 모노머 단백질의 3차원 패치 계산을 통하여 구조가 알려진 복합체의 상호작용사이트와 비상호작용사이트에 대한 패치 속성을 추출하고 이를 기반으로 Support Vector Machine (SVM) 분류기법을 이용한 예측 모델 개발을 제시한다. 타겟 클래스의 데이터 불균형 문제 해결을 위해 under-sampling 기법을 이용한다. 사용된 패치속성은 2차 구조 요소와 아미노산 구성으로부터 총 9개가 추출된다. 147개의 단백질 복합체에 대해서 10 fold cross validation을 통해서 다양한 분류모델의 성능 평가를 하였다. 평가한 분류 모델 중 SVM은 92.7%의 높은 정확성을 보이고 이를 이용하여 분류 모델을 개발하였다.

건설현장의 공사사전정보를 활용한 사망재해 예측 모델 개발 (Development of Prediction Models for Fatal Accidents using Proactive Information in Construction Sites)

  • 최승주;김진현;정기효
    • 한국안전학회지
    • /
    • 제36권3호
    • /
    • pp.31-39
    • /
    • 2021
  • In Korea, more than half of work-related fatalities have occurred on construction sites. To reduce such occupational accidents, safety inspection by government agencies is essential in construction sites that present a high risk of serious accidents. To address this issue, this study developed risk prediction models of serious accidents in construction sites using five machine learning methods: support vector machine, random forest, XGBoost, LightGBM, and AutoML. To this end, 15 proactive information (e.g., number of stories and period of construction) that are usually available prior to construction were considered and two over-sampling techniques (SMOTE and ADASYN) were used to address the problem of class-imbalanced data. The results showed that all machine learning methods achieved 0.876~0.941 in the F1-score with the adoption of over-sampling techniques. LightGBM with ADASYN yielded the best prediction performance in both the F1-score (0.941) and the area under the ROC curve (0.941). The prediction models revealed four major features: number of stories, period of construction, excavation depth, and height. The prediction models developed in this study can be useful both for government agencies in prioritizing construction sites for safety inspection and for construction companies in establishing pre-construction preventive measures.

불균형 정형 데이터를 위한 SMOTE와 변형 CycleGAN 기반 하이브리드 오버샘플링 기법 (A Hybrid Oversampling Technique for Imbalanced Structured Data based on SMOTE and Adapted CycleGAN)

  • 노정담;최병구
    • 경영정보학연구
    • /
    • 제24권4호
    • /
    • pp.97-118
    • /
    • 2022
  • 이미지와 같은 비정형 데이터의 불균형 클래스 문제 해결에 있어 생산적 적대 신경망(generative adversarial network)에 기반한 오버샘플링 기법의 우수성이 알려짐에 따라 다양한 연구들이 이를 정형 데이터의 불균형 문제 해결에도 적용하기 시작하였다. 그러나 이러한 연구들은 데이터의 형태를 비정형 데이터 구조로 변경함으로써 정형 데이터의 특징을 정확하게 반영하지 못한다는 점이 문제로 지적되고 있다. 본 연구에서는 이를 해결하기 위해 순환 생산적 적대 신경망(cycle GAN)을 정형 데이터의 구조에 맞게 재구성하고 이를 SMOTE(synthetic minority oversampling technique) 기법과 결합한 하이브리드 오버샘플링 기법을 제안하였다. 특히 기존 연구와 달리 생산적 적대 신경망을 구성함에 있어 1차원 합성곱 신경망(1D-convolutional neural network)을 사용함으로써 기존 연구의 한계를 극복하고자 하였다. 본 연구에서 제안한 기법의 성능 비교를 위해 불균형 정형 데이터를 기반으로 오버샘플링을 진행하고 그 결과를 SMOTE, ADASYN(adaptive synthetic sampling) 등과 같은 기존 기법과 비교하였다. 비교 결과 차원이 많을수록, 불균형 정도가 심할수록 제안된 모형이 우수한 성능을 보이는 것으로 나타났다. 본 연구는 기존 연구와 달리 정형 데이터의 구조를 유지하면서 소수 클래스의 특징을 반영한 오버샘플링을 통해 분류의 성능을 향상시켰다는 점에서 의의가 있다.

Polynomial Fuzzy Radial Basis Function Neural Network Classifiers Realized with the Aid of Boundary Area Decision

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.2098-2106
    • /
    • 2014
  • In the area of clustering, there are numerous approaches to construct clusters in the input space. For regression problem, when forming clusters being a part of the overall model, the relationships between the input space and the output space are essential and have to be taken into consideration. Conditional Fuzzy C-Means (c-FCM) clustering offers an opportunity to analyze the structure in the input space with the mechanism of supervision implied by the distribution of data present in the output space. However, like other clustering methods, c-FCM focuses on the distribution of the data. In this paper, we introduce a new method, which by making use of the ambiguity index focuses on the boundaries of the clusters whose determination is essential to the quality of the ensuing classification procedures. The introduced design is illustrated with the aid of numeric examples that provide a detailed insight into the performance of the fuzzy classifiers and quantify several essentials design aspects.