• Title/Summary/Keyword: Imbalanced Classification

Search Result 74, Processing Time 0.025 seconds

An Efficient One Class Classifier Using Gaussian-based Hyper-Rectangle Generation (가우시안 기반 Hyper-Rectangle 생성을 이용한 효율적 단일 분류기)

  • Kim, Do Gyun;Choi, Jin Young;Ko, Jeonghan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.2
    • /
    • pp.56-64
    • /
    • 2018
  • In recent years, imbalanced data is one of the most important and frequent issue for quality control in industrial field. As an example, defect rate has been drastically reduced thanks to highly developed technology and quality management, so that only few defective data can be obtained from production process. Therefore, quality classification should be performed under the condition that one class (defective dataset) is even smaller than the other class (good dataset). However, traditional multi-class classification methods are not appropriate to deal with such an imbalanced dataset, since they classify data from the difference between one class and the others that can hardly be found in imbalanced datasets. Thus, one-class classification that thoroughly learns patterns of target class is more suitable for imbalanced dataset since it only focuses on data in a target class. So far, several one-class classification methods such as one-class support vector machine, neural network and decision tree there have been suggested. One-class support vector machine and neural network can guarantee good classification rate, and decision tree can provide a set of rules that can be clearly interpreted. However, the classifiers obtained from the former two methods consist of complex mathematical functions and cannot be easily understood by users. In case of decision tree, the criterion for rule generation is ambiguous. Therefore, as an alternative, a new one-class classifier using hyper-rectangles was proposed, which performs precise classification compared to other methods and generates rules clearly understood by users as well. In this paper, we suggest an approach for improving the limitations of those previous one-class classification algorithms. Specifically, the suggested approach produces more improved one-class classifier using hyper-rectangles generated by using Gaussian function. The performance of the suggested algorithm is verified by a numerical experiment, which uses several datasets in UCI machine learning repository.

Classification of Imbalanced Data Based on MTS-CBPSO Method: A Case Study of Financial Distress Prediction

  • Gu, Yuping;Cheng, Longsheng;Chang, Zhipeng
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.682-693
    • /
    • 2019
  • The traditional classification methods mostly assume that the data for class distribution is balanced, while imbalanced data is widely found in the real world. So it is important to solve the problem of classification with imbalanced data. In Mahalanobis-Taguchi system (MTS) algorithm, data classification model is constructed with the reference space and measurement reference scale which is come from a single normal group, and thus it is suitable to handle the imbalanced data problem. In this paper, an improved method of MTS-CBPSO is constructed by introducing the chaotic mapping and binary particle swarm optimization algorithm instead of orthogonal array and signal-to-noise ratio (SNR) to select the valid variables, in which G-means, F-measure, dimensionality reduction are regarded as the classification optimization target. This proposed method is also applied to the financial distress prediction of Chinese listed companies. Compared with the traditional MTS and the common classification methods such as SVM, C4.5, k-NN, it is showed that the MTS-CBPSO method has better result of prediction accuracy and dimensionality reduction.

Imbalanced SVM-Based Anomaly Detection Algorithm for Imbalanced Training Datasets

  • Wang, GuiPing;Yang, JianXi;Li, Ren
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.621-631
    • /
    • 2017
  • Abnormal samples are usually difficult to obtain in production systems, resulting in imbalanced training sample sets. Namely, the number of positive samples is far less than the number of negative samples. Traditional Support Vector Machine (SVM)-based anomaly detection algorithms perform poorly for highly imbalanced datasets: the learned classification hyperplane skews toward the positive samples, resulting in a high false-negative rate. This article proposes a new imbalanced SVM (termed ImSVM)-based anomaly detection algorithm, which assigns a different weight for each positive support vector in the decision function. ImSVM adjusts the learned classification hyperplane to make the decision function achieve a maximum GMean measure value on the dataset. The above problem is converted into an unconstrained optimization problem to search the optimal weight vector. Experiments are carried out on both Cloud datasets and Knowledge Discovery and Data Mining datasets to evaluate ImSVM. Highly imbalanced training sample sets are constructed. The experimental results show that ImSVM outperforms over-sampling techniques and several existing imbalanced SVM-based techniques.

Re-SSS: Rebalancing Imbalanced Data Using Safe Sample Screening

  • Shi, Hongbo;Chen, Xin;Guo, Min
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.89-106
    • /
    • 2021
  • Different samples can have different effects on learning support vector machine (SVM) classifiers. To rebalance an imbalanced dataset, it is reasonable to reduce non-informative samples and add informative samples for learning classifiers. Safe sample screening can identify a part of non-informative samples and retain informative samples. This study developed a resampling algorithm for Rebalancing imbalanced data using Safe Sample Screening (Re-SSS), which is composed of selecting Informative Samples (Re-SSS-IS) and rebalancing via a Weighted SMOTE (Re-SSS-WSMOTE). The Re-SSS-IS selects informative samples from the majority class, and determines a suitable regularization parameter for SVM, while the Re-SSS-WSMOTE generates informative minority samples. Both Re-SSS-IS and Re-SSS-WSMOTE are based on safe sampling screening. The experimental results show that Re-SSS can effectively improve the classification performance of imbalanced classification problems.

A Novel Feature Selection Method in the Categorization of Imbalanced Textual Data

  • Pouramini, Jafar;Minaei-Bidgoli, Behrouze;Esmaeili, Mahdi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3725-3748
    • /
    • 2018
  • Text data distribution is often imbalanced. Imbalanced data is one of the challenges in text classification, as it leads to the loss of performance of classifiers. Many studies have been conducted so far in this regard. The proposed solutions are divided into several general categories, include sampling-based and algorithm-based methods. In recent studies, feature selection has also been considered as one of the solutions for the imbalance problem. In this paper, a novel one-sided feature selection known as probabilistic feature selection (PFS) was presented for imbalanced text classification. The PFS is a probabilistic method that is calculated using feature distribution. Compared to the similar methods, the PFS has more parameters. In order to evaluate the performance of the proposed method, the feature selection methods including Gini, MI, FAST and DFS were implemented. To assess the proposed method, the decision tree classifications such as C4.5 and Naive Bayes were used. The results of tests on Reuters-21875 and WebKB figures per F-measure suggested that the proposed feature selection has significantly improved the performance of the classifiers.

Classification of Class-Imbalanced Data: Effect of Over-sampling and Under-sampling of Training Data (계급불균형자료의 분류: 훈련표본 구성방법에 따른 효과)

  • 김지현;정종빈
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.3
    • /
    • pp.445-457
    • /
    • 2004
  • Given class-imbalanced data in two-class classification problem, we often do over-sampling and/or under-sampling of training data to make it balanced. We investigate the validity of such practice. Also we study the effect of such sampling practice on boosting of classification trees. Through experiments on twelve real datasets it is observed that keeping the natural distribution of training data is the best way if you plan to apply boosting methods to class-imbalanced data.

Default Prediction for Real Estate Companies with Imbalanced Dataset

  • Dong, Yuan-Xiang;Xiao, Zhi;Xiao, Xue
    • Journal of Information Processing Systems
    • /
    • v.10 no.2
    • /
    • pp.314-333
    • /
    • 2014
  • When analyzing default predictions in real estate companies, the number of non-defaulted cases always greatly exceeds the defaulted ones, which creates the two-class imbalance problem. This lowers the ability of prediction models to distinguish the default sample. In order to avoid this sample selection bias and to improve the prediction model, this paper applies a minority sample generation approach to create new minority samples. The logistic regression, support vector machine (SVM) classification, and neural network (NN) classification use an imbalanced dataset. They were used as benchmarks with a single prediction model that used a balanced dataset corrected by the minority samples generation approach. Instead of using prediction-oriented tests and the overall accuracy, the true positive rate (TPR), the true negative rate (TNR), G-mean, and F-score are used to measure the performance of default prediction models for imbalanced dataset. In this paper, we describe an empirical experiment that used a sampling of 14 default and 315 non-default listed real estate companies in China and report that most results using single prediction models with a balanced dataset generated better results than an imbalanced dataset.

A Statistical Perspective of Neural Networks for Imbalanced Data Problems

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.7 no.3
    • /
    • pp.1-5
    • /
    • 2011
  • It has been an interesting challenge to find a good classifier for imbalanced data, since it is pervasive but a difficult problem to solve. However, classifiers developed with the assumption of well-balanced class distributions show poor classification performance for the imbalanced data. Among many approaches to the imbalanced data problems, the algorithmic level approach is attractive because it can be applied to the other approaches such as data level or ensemble approaches. Especially, the error back-propagation algorithm using the target node method, which can change the amount of weight-updating with regards to the target node of each class, attains good performances in the imbalanced data problems. In this paper, we analyze the relationship between two optimal outputs of neural network classifier trained with the target node method. Also, the optimal relationship is compared with those of the other error function methods such as mean-squared error and the n-th order extension of cross-entropy error. The analyses are verified through simulations on a thyroid data set.

Selecting the optimal threshold based on impurity index in imbalanced classification (불균형 자료에서 불순도 지수를 활용한 분류 임계값 선택)

  • Jang, Shuin;Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.5
    • /
    • pp.711-721
    • /
    • 2021
  • In this paper, we propose the method of adjusting thresholds using impurity indices in classification analysis on imbalanced data. Suppose the minority category is Positive and the majority category is Negative for the imbalanced binomial data. When categories are determined based on the commonly used 0.5 basis, the specificity tends to be high in unbalanced data while the sensitivity is relatively low. Increasing sensitivity is important when proper classification of objects in minority categories is relatively important. We explore how to increase sensitivity through adjusting thresholds. Existing studies have adjusted thresholds based on measures such as G-Mean and F1-score, but in this paper, we propose a method to select optimal thresholds using the chi-square statistic of CHAID, the Gini index of CART, and the entropy of C4.5. We also introduce how to get a possible unique value when multiple optimal thresholds are obtained. Empirical analysis shows what improvements have been made compared to the results based on 0.5 through classification performance metrics.

Weighted L1-Norm Support Vector Machine for the Classification of Highly Imbalanced Data (불균형 자료의 분류분석을 위한 가중 L1-norm SVM)

  • Kim, Eunkyung;Jhun, Myoungshic;Bang, Sungwan
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.1
    • /
    • pp.9-21
    • /
    • 2015
  • The support vector machine has been successfully applied to various classification areas due to its flexibility and a high level of classification accuracy. However, when analyzing imbalanced data with uneven class sizes, the classification accuracy of SVM may drop significantly in predicting minority class because the SVM classifiers are undesirably biased toward the majority class. The weighted $L_2$-norm SVM was developed for the analysis of imbalanced data; however, it cannot identify irrelevant input variables due to the characteristics of the ridge penalty. Therefore, we propose the weighted $L_1$-norm SVM, which uses lasso penalty to select important input variables and weights to differentiate the misclassification of data points between classes. We demonstrate the satisfactory performance of the proposed method through simulation studies and a real data analysis.