PURPOSE: This study was examined the effects of coordinative locomotor training (CLT) on the postural imbalance and gait in children. METHODS: Four children were sampled as subjects. A single subject study (A-B-A') was conducted by measuring the following: baseline five sessions;, intervention phase, 15 sessions;, and postline (A') five sessions. The research period was eight weeks. The CLT program consisted of warming-up exercise, main exercise, and finishing exercise, and it was performed for one hour per day. A oneleg standing test (OLST) was performed determine the static balance. A functional reach test (FRT) was performed determine the reactionary balance. To determine the dynamic balance, the time up and go test (TUG) was performed. A 10m walking test (10 MWT) was performed to determine the walking ability. A statistical test was performed through descriptive statistics to present the average and standard deviation, and the variation rate was compared using a visual analysis method with graphs. RESULTS: As a result of CLT application, all four subjects improved the OLST, FRT, TUG, and 10 MWT compared to the intervention period baseline, and postline period. CONCLUSION: CLT appeared to improve the posture imbalance and gait in children.
Purpose: This study determined the effects of elastic bands in coordinative locomotor training on the body alignment of elementary school baseball players. Methods: Thirty subjects were recruited for this study and separated into two groups: the coordinative locomotor training group with elastic bands (n=15) and the non-training control group (n=15) were five times a week for eight. The trunk inclination, trunk imbalance, kyphotic angle and lordotic angle were used to evaluate body alignment. Results: The experimental group showed significant improvements in trunk inclination, trunk imbalance, kyphotic angle and lordotic angle (p<0.05). Conclusion: Coordinative locomotor training impacted postural alignment in elementary school baseball players.
머신러닝을 이용한 분류 모델 훈련에서 학습자료의 양과 질은 학습한 모델의 성능을 좌우하므로 학습자료 생성이 매우 중요한 역할을 한다. 그러나 자료 생성에 높은 비용이 들어 이상적인 학습자료 생성이 어려울 때에는 클래스 간 자료 불균형 문제가 발생한다. 만약 학습자료로 사용될 탐사자료가 클래스 간 불균형하게 얻어지면, 클래스 별로 균형있는 학습이 이루어지기 힘들다. 따라서 데이터가 상대적으로 적은 클래스는 재현율이 현저히 떨어지게 된다. 그 뿐만 아니라 정확도와 정밀도 등의 평가지표들에 대한 신뢰도가 떨어지게 된다. 따라서 이 연구에서는 두 단계에 걸쳐 자료 불균형 문제를 해소하고자 하였다. 첫 번째로 기존의 정확도와 정밀도를 개선하여 자료 불균형을 고려할 수 있는 새로운 평가지표로 가중정확도와 가중정밀도를 고안하였다. 다음으로 클래스 간의 가중정밀도와 재현율의 균형을 맞추어 주도록 오버샘플링을 수행하였다. 개발한 알고리듬을 물리검층 자료를 이용한 암상 및 공극유체 규명 문제에 적용함으로써 검증하였다. 그 결과 다수 클래스와 소수 클래스들 간의 불균형이 상당 부분 완화되었고, 클래스 간의 경계를 보다 명확하게 확인할 수 있었다.
Du, Yao;Li, Ling-fang;Hou, Rong-rong;Wang, Xiao-you;Tian, Wei;Xia, Yong
Smart Structures and Systems
/
제29권1호
/
pp.63-75
/
2022
The raw data collected by structural health monitoring (SHM) systems may suffer multiple patterns of anomalies, which pose a significant barrier for an automatic and accurate structural condition assessment. Therefore, the detection and classification of these anomalies is an essential pre-processing step for SHM systems. However, the heterogeneous data patterns, scarce anomalous samples and severe class imbalance make data anomaly detection difficult. In this regard, this study proposes a convolutional neural network-based data anomaly detection method. The time and frequency domains data are transferred as images and used as the input of the neural network for training. ResNet18 is adopted as the feature extractor to avoid training with massive labelled data. In addition, the focal loss function is adopted to soften the class imbalance-induced classification bias. The effectiveness of the proposed method is validated using acceleration data collected in a long-span cable-stayed bridge. The proposed approach detects and classifies data anomalies with high accuracy.
Purpose : The purpose of this study was to evaluate the effect of core stability training at deep abdominal muscle for balance control of hemiplegic patient. Method : The subject of this study was a 47-year-old man with right hemiplegia. He was treated five times a week for three weeks with core stability training at deep abdominal muscles. Evaluation tool was used Functional reach test(FRT), timed up and go test(TUG) and one leg standing for stroke patients. Result : The FRT distance increase, TUG time decrease, one leg standing time increase core stability training at deep abdominal muscles for right hemiplegia improved was the ability for maintain balance. Posture and control of trunk stability are changing posture, and so which showed significant improve of total balance control. Conclusion : The result of this study showed that core stability training at deep abdominal muscles is an effective treatment for balance control. Therefore, it could be considered as a treatment method in the rehabilitation of stroke patient with poor postural control and imbalance, although further studies are needed.
본 논문에서는 OFDM 기반 무선 LAN 시스템에서 긴 훈련심볼을 이용하는, 시간동기 오차의 영향이 고려된 IQ imbalance 추정 및 보상 기법을 제안한다. 기존의 긴 훈련심볼을 이용한 IQ imbalance 보상 기법은 시간동기 오차에 민감한 구조를 갖기 때문에 시간동기 오차가 필연적인 실제 시스템에서는 심각한 성능 저하를 보인다. 본 논문에서는 시간동기 오차로 인해 발생하는 위상회전을 상쇄시킬 수 있는 새로운 criterion을 정의하고, 이에 따른 IQ imbalance 추정 및 보상 기법을 제안한다. 제안된 기법은 시간동기 오차가 존재할 경우에도 IQ imbalance 의 영향을 이상적인 경우 대비 최대 0.2dB 이하로 보상할 수 있으며, IEEE 802.11a 시스템의 54Mbps 전송모드에 적용하였을 경우 기존 기법에 비해 약 4.3dB의 성능 이득을 보인다. 제안된 기법을 이용한 IQ imbalance 추정 및 보상단은 Verilog HDL을 이용하여 하드웨어 설계 및 검증 되었으며, 0.18um CMOS 공정을 이용하여 합성한 결과, 약 75K gates 와 6K bits의 메모리로 구현되었다.
본 연구는 아헹가 요가 프로그램이 중년여성의 하체불균형에 미치는 영향을 분석하는데 그 목적이 있다. 연구의 대상자는 35-60세 사이의 중년여성으로서 요가 수련의 경험이 없으며 다른 운동 훈련에 참가 하지 않고, X-RAY검사와 간스테드 테크닉(Gonsted Technique) 분석을 통하여 골반불균형이면서 하지 길이의 차이가 있는 중년여성 24명을 선정하여 12주 동안, 주3회, 1일 90분 동안 수련하였다. 통계방법은 대응 t-검정을 실시하여 수련 전과 후를 비교하였고, 유의 수준은 0.05로 설정하였다. 이 연구의 결과는 첫째, 아헹가 요가는 골반 불균형을 교정하는데 통계적으로 유의한 결과를 나타냈다. 즉 골반 불균형 개선에서 좌 우 엉덩뼈 높이(p < 0.001), 좌 우 엉덩뼈 넓이 (p < 0.001), 좌 우 엉덩뼈 길이 ((p < 0.001), 좌 우 엉치뼈넓이 (p < 0.001)에서 수련 전보다 수련 후 그 차이가 감소하는 유의한 변화를 보여주었다. 둘째, 하지 길이의 변화에서는 아헹가 요가 수련 전 보다 수련 후에 좌 우 하지 길이 차이 (p < 0.001)가 현저하게 감소하였으며 통계적으로 유의한 효과를 나타내었다. 이상의 연구 결과에서 아헹가 요가 수련이 중년여성의 신체불균형을 교정하는데 매우 효과가 크다는 것을 알 수 있었다.
어린이 음성인식의 활용 분야가 증가하고 있지만, 양질의 데이터 부족은 어린이 음성인식 성능 향상의 걸림돌이 되고 있다. 본 논문은 성인의 음성 데이터를 추가로 사용하여 어린이 음성인식 성능을 개선하는 방법을 새롭게 제안한다. 제안하는 방법은 성인 학습 데이터양이 증가할수록 커지는 연령 간 데이터 불균형을 효과적으로 다루기 위해 dynamically weighted loss를 사용하여 트랜스포머 기반 도메인 적대적 훈련하는 방식이다. 구체적으로, 학습 중 미니 배치 내 클래스 불균형 정도를 수치화하고, 데이터가 적을수록 큰 가중치를 갖도록 손실함수를 정의하여 사용하였다. 실험에서는 성인과 어린이 학습 데이터 간 비대칭성에 따른 제안된 도메인 적대적 훈련의 효용성을 검증하였다. 실험 결과, 학습 데이터 내 연령 간 비대칭이 발생하는 모든 조건에서 제안하는 방법이 기존 도메인 적대적 훈련 방식보다 높은 어린이 음성인식 성능을 가짐을 확인할 수 있었다.
본 연구는 고등학교 야구선수들의 신체 정렬을 증진 시키는 방법으로 협응이동훈련의 효과를 알아보는 데 그 목적이 있다. 실험군 20명을 대상으로 협응이동훈련을 4주간 주 5회 40분 적용하였다. 신체 정렬은 포메트릭으로 측정하였고, 신체 정렬을 나타내는 변수로는 앞·뒤 몸통 기울기 각, 좌·우 몸통 기울기 각, 골반 기울기 각, 골반 비틀림 각, 등뼈 후만각, 허리 전만각 등이 있다. 협응이동훈련을 고등학교 야구선수에게 적용한 후 측정 결과는 실험군에서 등뼈 후만각, 허리 전만각에서는 통계적으로 유의한 차이가 나타났다. 위의 결과로 보아 협응이동훈련이 고등학교 야구선수의 신체 정렬에 긍정적인 영향을 주는 것으로 나타났다. 이는 고등학교 야구선수의 신체 불균형을 예방하는 데 있어서 협응이동훈련이 효과적임을 확인할 수 있었다.
In this paper, credit card delinquency means the possibility of occurring bad debt within the certain near future from the normal accounts that have no debt and the problem is to predict, on the monthly basis, the occurrence of delinquency 3 months in advance. This prediction is typical binary classification problem but suffers from the issue of data imbalance that means the instances of target class is very few. For the effective prediction of bad debt occurrence, Support Vector Machine (SVM) with kernel trick is adopted using credit card usage and payment patterns as its inputs. SVM is widely accepted in the data mining society because of its prediction accuracy and no fear of overfitting. However, it is known that SVM has the limitation in its ability to processing the large-scale data. To resolve the difficulties in applying SVM to bad debt occurrence prediction, two stage clustering is suggested as an effective data reduction method and ensembles of SVM models are also adopted to mitigate the difficulty due to data imbalance intrinsic to the target problem of this paper. In the experiments with the real world data from one of the major domestic credit card companies, the suggested approach reveals the superior prediction accuracy to the traditional data mining approaches that use neural networks, decision trees or logistics regressions. SVM ensemble model learned from T2 training set shows the best prediction results among the alternatives considered and it is noteworthy that the performance of neural networks with T2 is better than that of SVM with T1. These results prove that the suggested approach is very effective for both SVM training and the classification problem of data imbalance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.