비동기 반복 알고리즘은 부하 불균형 및 컴퓨터 노드 간의 전송 지연에 의한 병렬 알고리즘의 성능 저하를 완화하는 하나의 방법인데, 이는 노드들 간의 비대칭적 데이터 전송을 필요로 한다 본 논문에서는 분산 메모리 시스템 상에서 MPMD 방식으로 노드당 별도의 서버 프로세스를 추가로 생성하여 비대칭적 전송을 구현하고, 노드당 하나의 프로세스를 생성하는 SPMD 방식과 비교하며 그 장단점에 대해 논의한다.
Sara Alqethami;Badriah Almutanni;Walla Aleidarousr
International Journal of Computer Science & Network Security
/
제24권4호
/
pp.1-10
/
2024
In the era of big data, the growth of e-commerce transactions brings forth both opportunities and risks, including the threat of data theft and fraud. To address these challenges, an automated real-time fraud detection system leveraging machine learning was developed. Four algorithms (Decision Tree, Naïve Bayes, XGBoost, and Neural Network) underwent comparison using a dataset from a clothing website that encompassed both legitimate and fraudulent transactions. The dataset exhibited an imbalance, with 9.3% representing fraud and 90.07% legitimate transactions. Performance evaluation metrics, including Recall, Precision, F1 Score, and AUC ROC, were employed to assess the effectiveness of each algorithm. XGBoost emerged as the top-performing model, achieving an impressive accuracy score of 95.85%. The proposed system proves to be a robust defense mechanism against fraudulent activities in e-commerce, thereby enhancing security and instilling trust in online transactions.
International journal of advanced smart convergence
/
제13권3호
/
pp.143-149
/
2024
As the size of data and models in machine learning training continues to grow, training on a single server is becoming increasingly challenging. Consequently, the importance of distributed machine learning, which distributes computational loads across multiple machines, is becoming more prominent. However, several unresolved issues remain regarding the performance enhancement of distributed machine learning, including communication overhead, inter-node synchronization challenges, data imbalance and bias, as well as resource management and scheduling. In this paper, we propose ParamHub, which utilizes orchestration to accelerate training speed. This system monitors the performance of each node after the first iteration and reallocates resources to slow nodes, thereby speeding up the training process. This approach ensures that resources are appropriately allocated to nodes in need, maximizing the overall efficiency of resource utilization and enabling all nodes to perform tasks uniformly, resulting in a faster training speed overall. Furthermore, this method enhances the system's scalability and flexibility, allowing for effective application in clusters of various sizes.
With the development of deep learning technology, researchers and technicians keep attempting to apply deep learning in various industrial and academic fields, including the defense. Most of these attempts assume that the data are balanced. In reality, since lots of the data are imbalanced, the classifier is not properly built and the model's performance can be low. Therefore, this study proposes cost-sensitive learning as a solution to the imbalance data problem of image classification in the defense field. In the proposed model, cost-sensitive learning is a method of giving a high weight on the cost function of a minority class. The results of cost-sensitive based model shows the test F1-score is higher when cost-sensitive learning is applied than general learning's through 160 experiments using submarine/non-submarine dataset and warship/non-warship dataset. Furthermore, statistical tests are conducted and the results are shown significantly.
Background: As preexisting comorbidities are risk factors for Coronavirus Disease 19 (COVID-19), improved tools are needed for screening or diagnosing COVID-19 in clinical practice. Difficulties of including vulnerable patient data may create data imbalance and hinder the provision of well-performing prediction tools, such as artificial intelligence (AI) models. Thus, we systematically reviewed studies on AI prognosis prediction in patients infected with COVID-19 and existing comorbidities, including cancer, to investigate model performance and predictors dependent on patient data. PubMed and Cochrane Library databases were searched. This study included research meeting the criteria of using AI to predict outcomes in COVID-19 patients, whether they had cancer or not. Preprints, abstracts, reviews, and animal studies were excluded from the analysis. Majority of non-cancer studies (54.55 percent) showed an area under the curve (AUC) of >0.90 for AI models, whereas 30.77 percent of cancer studies showed the same result. For predicting mortality (3.85 percent), severity (8.33 percent), and hospitalization (14.29 percent), only cancer studies showed AUC values between 0.50 and 0.69. The distribution of comorbidity data varied more in non-cancer studies than in cancer studies but age was indicated as the primary predictor in all studies. Non-cancer studies with more balanced datasets of comorbidities showed higher AUC values than cancer studies. Based on the current findings, dataset balancing is essential for improving AI performance in predicting COVID-19 in patients with comorbidities, especially considering age.
Journal of the Korean Data and Information Science Society
/
제27권2호
/
pp.275-284
/
2016
정확한 전력수요 예측은 에너지 소비를 줄이고 전력수급의 불균형을 방지한다. 본 연구는 외부요인의 영향을 가장 적게 받는 특정 시간대의 일 단위 전력 수요량을 참조선 (reference line)으로 한 시계열모형을 세우고자 한다. 고려된 시계열모형은 슬라이딩 창을 이용한 이중 계절성 Holt-Winters 모형과 TBATS 모형이다. 시계열모형의 모수는 2009년 1월 4일부터 2011년 12월 31일까지 자료를 이용하여 추정되었으며, 2012년 1월 1일부터 2012년 12월 29일까지의 각 모형의 전력수요량을 예측하여 성능을 비교하였다. RMSE와 MAPE를 통해 예측 성능을 비교한 결과 TBATS 모형의 성능이 우수하였다.
This paper uses the Heckman model to evaluate the income difference between the public sector and the private sector based on the CHNS data. The research finds that the difference of the public sector versus the private sector between the west area and the east area is about 10% from 1989 to 2000, the transition of the income difference is smooth, that data has made sharp increase to 32% from 2000 to 2011. Considering the income difference between the west area and the central area, the central area and the east area from 1989 to 1997, the data is about 10~15%, from 2000 to 2011 is rocketing time, the data reaches 20%. This paper is very revealing about the income difference ofthe public sector versus the private sector is increasing year after year, and the economy is developing rapidly but with imbalance among different areas in China. It would provides the reference for adjust the income distribution system in future.
Page-oriented holographic data storage (HDS) is very sensitive to the disturbances. However, vibration effect by disc imbalance can be ignored because data pages are recorded and retrieved with stop-go rotation. Therefore, just estimating de-track due to eccentricity of disc is enough to construct stable track servo system. In this paper, propose the spacing of track servo patterns optimization method using Least Mean Square (LMS) estimation algorithm. Through the patterns spacing optimization, storage density maximize can be achieved.
Background: Trigeminal neuralgia (TN) is one of the most painful disorder in the orofacial region, and many patients have suffered from this disease. For the effective management of TN, fundamental epidemiologic data related to the target population group are essential. Thus, this study was performed to clarify the epidemiological characteristics of TN in the Korean population. This is the first national study to investigate the prevalence of TN in Korean patients. Methods: From 2014 to 2018, population-based medical data for 51,276,314 subscribers to the National Health Insurance Service of Korea were used for this study. Results: The incidence of TN was 100.21 per 100,000 person-years in the year of 2018 in Korea, and the male to female ratio was 1:2.14. The age group of 51-59 years had the highest prevalence of TN. Constant increases in medical cost, regional imbalance, and differences in prescription patterns by the medical specialties were showed in the management of TN. Conclusions: The results in this study will not only help to study the characteristics of TN, but also serve as an important basis for the effective management of TN in Korea.
기계학습 기반의 침입탐지 방법론들은 분류하고자 하는 각 클래스에 대해 균등한 많은 학습 데이터가 필요하며, 탐지 또는 분류하려는 공격유형의 추가 시 시스템을 모두 재학습해야 하는 문제점을 가지고 있다. 본 논문에서는 특징학습과 계층분류 방법을 이용하여, 비교적 적은 학습 데이터를 이용한 분류 문제 및 데이터 불균형 문제를 해결하고, 새로운 공격유형의 추가가 쉬운 침입탐지 방법론을 제안하고자 한다. 제안된 시스템은 KDD 침입탐지 데이터를 이용한 실험으로 가능성을 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.