• 제목/요약/키워드: Imaging agent

검색결과 248건 처리시간 0.027초

베타아밀로이드 영상용 프로브 ([ ${\beta}-Amyloid$ ] Imaging Probes)

  • 정재민
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제41권2호
    • /
    • pp.112-117
    • /
    • 2007
  • Imaging distribution of ${\beta}-amyloid$ plaques in Alzheimer's disease is very important for early and accurate diagnosis. Early trial of the ${\beta}-amyloid$ plaques includes using radiolabeled peptides which can be only applied for peripheral ${\beta}-amyloid$ plaques due to limited penetration through the blood brain barrier (BBB). Congo red or Chrysamine G derivatives were labeled with Tc-99m for imaging ${\beta}-amyloid$ plaques of Alzheimer patient's brain without success due to problem with BBB penetration. Thioflavin T derivatives gave breakthrough for ${\beta}-amyloid$ imaging in vivo, and a benzothiazole derivative [C-11]6-OH-BTA-1 brought a great success. Many other benzothiazole, benzoxazole, benzofuran, imidazopyridine, and styrylbenzene derivatives have been labeled with F-18 and I-123 to improve the imaging quality. However, [C-11]6-OH-BTA-1 still remains as the best. However, short half-life of C-11 is a limitation of wide distribution of this agent. So, it is still required to develop an Tc-99m, F-18 or I-123 labeled agent for ${\beta}-amyloid$ imaging agent.

세라믹 LDH 나노하이브리드를 이용한 MRI 조영제의 최신 연구동향 (Recent Progress in MRI Contrast Agent with Ceramic LDH Nanohybrids)

  • 하성진;김문희;박대환
    • 세라미스트
    • /
    • 제22권3호
    • /
    • pp.269-280
    • /
    • 2019
  • Ceramic layered double hydroxide (LDH) nanohybrids have attracted considerable interest in biomedical science due to their unique structural feature and characteristics in biological condition. Many studies on LDH nanoparticles have been reported in diagnosis applications including magnetic resonance imaging (MRI) contrast agents in order to not only provide better imaging performance through multimodal imaging strategy, but realize therapeutic function which treat cancers in one platform. This review highlights the recent progress in MRI T1 contrast agent, dual modal imaging system, and MRI-guided drug delivery systems ranging from synthetic method and characterization to evaluation in vitro and in vivo based on the ceramic LDH nanohybrids. Future research directions are also suggested for next-generation bio-imaging contrast agent.

Effect of Gd-based MR contrast agents on CT attenuation of PET/CT for quantitative PET-MRI study

  • Ko, In OK;Park, Ji Ae;Lee, Won Ho;Lim, Sang Moo;Kim, Kyeong Min
    • 대한방사성의약품학회지
    • /
    • 제1권2호
    • /
    • pp.130-136
    • /
    • 2015
  • We evaluate the influence of MR contrast agent on positron emission tomography (PET) image using phantom, animal and human studies. Phantom consisted of 15 solutions with the mixture of various concentrations of Gd-based MR contrast agent and fixed activity of [$^{18}F$]FDG. Animal study was performed using rabbit and two kinds of MR contrast agents. After injecting contrast agent, CT or MRI scanning was performed at 1, 2, 5, 10, and 20 minutes. PET image was obtained using clinical PET/CT scan, and attenuation correction was performed using the all CT images. The values of HU, PET activity and MRI intensity were obtained from ROIs in each phantom and organ regions. In clinical study, patients (n=20) with breast cancer underwent sequential acquisitions of early [$^{18}F$]FDG PET/CT, MRI and delayed PET/CT. In phantom study, as the concentration increased, the CT attenuation and PET activity also increased. However, there was no relationship between the PET activity and the concentration in the clinical dose range of contrast agent. In animal study, change of PET activity was not significant at all time point of CT scan both MR contrast agents. There was no significant change of HU between early and delayed CT, except for kidney. Early and delayed SUV in tumor and liver showed significant increase and decrease, respectively (P<0.05). Under the condition of most clinical study (< 0.2 mM), MR contrast agent did not influence on PET image quantitation.

Comparison Study of Image Performance with Contrast Agent Contents for Brain Magnetic Resonance Imaging

  • Lee, Youngjin;Choi, Min Hyeok;Goh, Hee Jin;Han, Dong-Kyoon
    • Journal of Magnetics
    • /
    • 제21권2호
    • /
    • pp.281-285
    • /
    • 2016
  • The purpose of study was to evaluate SNR and CNR with different contrast agent contents (1.0 mmol/mL gadobutrol and 0.5 mmol/mL gadoterate meglumine) for spin echo (SE) and 3-dimension contrast-enhanced fast field echo (3D CE-FFE) pulse sequences. In this study, we compared the SNR and the CNR between 0.5 mmol/mL gadoterate meglumine and 1.0 mmol/mL gadobutrol according to the concentration of contrast agent in brain MRI. When we compared between SE and 3D CE-FFE pulse sequences, the higher SNR and CNR using 3D CE-FFE pulse sequence can be acquire regardless of contrast agent contents. Also, a statistically significant difference was found for SNR and CNR between all protocols. In conclusion, our results demonstrated that the SNR and CNR have not risen proportionately with contrast agent contents. We hope that these results presented in this paper will contribute to decide contrast agent contents for brain MRI.

Breast Ultrasound Microvascular Imaging and Radiogenomics

  • Ah Young Park;Bo Kyoung Seo;Mi-Ryung Han
    • Korean Journal of Radiology
    • /
    • 제22권5호
    • /
    • pp.677-687
    • /
    • 2021
  • Microvascular ultrasound (US) techniques are advanced Doppler techniques that provide high sensitivity and spatial resolution for detailed visualization of low-flow vessels. Microvascular US imaging can be applied to breast lesion evaluation with or without US contrast agents. Microvascular US imaging without a contrast agent uses a sophisticated wall filtering system to selectively obtain low-flow Doppler signals from overlapped artifacts. Microvascular US imaging with second-generation contrast agents amplifies flow signals and makes them last longer, which facilitates hemodynamic evaluation of breast lesions. In this review article, we will introduce various microvascular US techniques, explain their clinical applications in breast cancer diagnosis and radiologic-histopathologic correlation, and provide a summary of a recent radiogenomic study using microvascular US.

Supradiaphragmatic Liver Confirmed by a Hepatocyte-specific Contrast Agent (Gd-EOB-DTPA): A Case Report

  • Cho, Young Jong;Kim, Hyuk Jung;Bae, Young A;Jang, Suk Ki;Yeon, Jae Woo
    • Investigative Magnetic Resonance Imaging
    • /
    • 제19권1호
    • /
    • pp.52-55
    • /
    • 2015
  • Supradiaphragmatic liver is a rare condition. Establishing an accurate preoperative diagnosis is difficult. Operative exploration is necessary to differentiate this lesion from intrathoracic masses, such as a pleural based tumor, diaphragmatic tumor and peripheral lung tumor. However, with the aid of the hepatocyte-specific magnetic resonance imaging contrast agent, gadoxetic acid (Gd-EOB-DTPA), functional hepatocytes in the lesion can be identified in the hepatobiliary phase, potentially allowing an accurate and non-invasive diagnosis. We report a case of supradiaphragmatic liver diagnosed by Gd-EOB-DTPA-enhanced magnetic resonance imaging.

Preparation and characterization of Ga-68-deferoxamine to test the feasibility as a bifunctional chelating agent or a renal imaging radiopharmaceutical

  • Kim, Young Ju;Lee, Yun-Sang;Jeong, Jae Min
    • 대한방사성의약품학회지
    • /
    • 제1권1호
    • /
    • pp.31-37
    • /
    • 2015
  • Chelating agents 1,4,7-triazacyclononanetriacetic acid (NOTA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and 30-amino-3,14,25-trihydroxy-3,9,14,20,25-penta-azatriacontane-2,10,13,21,24-pentaone (desferrioxamine, DFO) were labeled with $^{68}Ga$ and tested in vitro properties to check the feasibility of using DFO as a bifunctional chelating agent or renal imaging agent. The chelating agents of concentration $2{\mu}M$ were labeled with $^{68}Ga$ in 0.1 M HCl at pH 1.7-10.3 at room temperature and $80^{\circ}C$ and the optimal pH for labeling each chelating agent was found. And then, the chelating agents were labeled with $^{68}Ga$ in various concentration of chelating agents at optimal pH. The labeled chelating agents were subject to stability test in human serum and to binding studies to human red blood cell (RBC) and plasma protein. The optimal pH's of NOTA, DOTA and DFO for $^{68}Ga$-labeling were 4.4, 3.6 and 5.6, respectively. DFO ($10{\mu}M$) showed high labeling efficiency (>97%) at pH 5.6. All the labeled chelating agents showed high stability in human serum. $^{68}Ga$-DFO showed low RBC binding but significant amount was bound to plasma protein. The results demonstrated that $^{68}Ga$-DFO can be used as a bifunctional chelating agent but not as a renal imaging agent.

In vivo Imaging Biodistribution Profile of a New Macrocyclic Gadolinium Chelate as a Highly Stable Multifunctional MRI Contrast Agent

  • Sung, Bo Kyung;Jo, Yeong Woo;Chang, Yongmin
    • Investigative Magnetic Resonance Imaging
    • /
    • 제23권1호
    • /
    • pp.34-37
    • /
    • 2019
  • Gadolinium contrast agents (CAs) are integral components of clinical magnetic resonance imaging (MRI). However, safety concerns have arisen regarding the use of gadolinium CAs, due to their association with nephrogenic systemic fibrosis (NSF). Furthermore, recently the long-term retention of $Gd^{3+}-based$ CAs in brains patients with normal renal function raised another possible safety issue. The safety concerns of $Gd^{3+}-based$ CAs have been based on the ligand structure of $Gd^{3+}-based$ CAs, and findings that $Gd^{3+}-based$ CAs with linear ligand structures showed much higher incidences of NSF and brain retention of CAs than $Gd^{3+}-based$ CAs with macrocyclic ligand structure. In the current study, we report the in vivo biodistribution profile of a new highly stable multifunctional $Gd^{3+}-based$ CA, with macrocyclic ligand structure (HNP-2006). MR imaging using HNP-2006 demonstrated a significant contrast enhancement in many different organs. Furthermore, the contrast enhanced tumor imaging using HNP-2006 confirmed that this new macrocyclic CA can be used for detecting tumor in the central nervous system. Therefore, this new multifunctional HNP-2006 with macrocyclic ligand structure shows great promise for whole-body clinical application.

심근관류영상을 위한 심근부하 방법 및 검사 프로토콜 (Stress Testing and Imaging Protocols for Myocardial Perfusion Studies)

  • 김성민
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제43권3호
    • /
    • pp.179-195
    • /
    • 2009
  • Scince $^{201}$TI was introduced as a myocardial perfusion imaging agent in the early 1970s, scintigraphic evaluation of myocardial perfusion for the diagnosis of coronary artery disease is a valuable noninvasive diagnostic imaging modality. Stress radionuclide myocardial perfusion imaging is widely accepted to have high diagnostic and prognostic use in the assessment of patients with known or suspected coronary artery disease. With wise use of this nonivasive imaging technique, more patients are referred for stress perfusion imaging. Until now various protocols for stress testing and myocardial imaging were developed and used in worldwide. This article presented various protocols of stress testing and myocardial imaging for clinical use.

Synthesis and Evaluation of 2-[123I]iodoemodin for a Potential Breast Cancer Imaging Agent

  • Park, Jeong-Hoon;Kim, Sang-Wook;Yang, Seung-Dae;Hur, Min-Goo;Chun, Kwon-Soo;Yu, Kook-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권3호
    • /
    • pp.595-598
    • /
    • 2008
  • Emodin (3-methyl-1,6,8-trihydroxyanthraquinone) is a natural chemotherapeutic compound with diverse biological properties including an antitumor activity. Emodin, a specific inhibitor of the protein tyrosine kinase, has a number of cellular targets in related to it. Its inhibition activity affects the mammalian cell cycle regulation in specific oncogene. Practically, it has been proven to inhibit HER-2/neu tyrosine kinase expressing breast cancer cells as an anticancer agent. 2-[123I]iodoemodin has been synthesized and evaluated human breast cancer cells (MDA-MB-231, MCF-7, fibroblast as a control) which express basal levels of HER-2/neu tyrosine kinase to investigate its suitability as a breast cancer imaging agent and 2-iodoemodin has been synthesized as a standard compound. The radiochemical yield of the 2-[123I]iodoemodin was about 72% and its radiochemical purity was over 97% after purification. The radioactivity of the 2-[123I]iodoemodin was increased in a time dependent manner in both cell lines and the ratio of MDA-MB-231 and MCF7 to fibroblast was 2.9 and 1.7, respectively.